博碩士論文 102127007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:54.80.26.116
姓名 吳青展(Ching-Chan Wu)  查詢紙本館藏   畢業系所 學習與教學研究所
論文名稱 關係子題及線圖對國小數學低成就學生理解比較型文字題之影響
(Effects of Relative Subproblem and Line Diagram on Mathematics Underachievers’ Comprehension of Compare Problems.)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究旨在探討「關係子題」與「線圖」對國小三年級數學低成就學生(依不同工作記憶問題,可分為語意記憶困難型、視覺空間困難型)理解比較型文字題中難度最高「參照量未知」題之助益。研究過程包含兩階段,第一階段透過「基礎數學概念評量」、「語文工作記憶測驗」、「視空間工作記憶作業」三項篩得41名語意記憶困難數低生及57名視覺空間困難數低生;第二階段兩類數低生均須接受研究者參考葉雪梅(民79)實驗材料所改編之「原始參照量未知題」、「附加『綜合關係子題』參照量未知題」、「附加『線圖』參照量未知題」等三份試題。結果主要有三點發現:(一)工作記憶為一可區分數學低成就群體之關鍵認知特質;(二)綜合關係子題對語意記憶困難數低生最具促進理解之效;(三)線圖對視覺空間困難數低生最具促進理解之效。最後,基於研究結果及限制,針對學術、實務兩個面向提出具體建議。
摘要(英) The purpose of this study is to discuss the effectiveness of “relative subproblem” and “line diagram” on mathematics underachievers’ comprehension of “unknown reference set problems”, which are the most difficult compare problems.
98 third-graders children were recruited from 8 elementary schools in Taoyuan City, and divided into 2 groups by their working memory difficulty: representation or retrieval of arithmetic facts from semantic memory (N=41); visuospatial representation of numerical information (N=57).
The process of this study includes 2 stages. At stage 1, all participants were divided into 2 groups via completing “Basic Math Concept Test” (Ko, 1999), “Working Memory Test” (Tzeng, 1999), “Visuospatial Working Memory Tasks” (Chen, 2004); at stage 2, they had to finish 3 types of unknown reference set problems, referred to the experimental materials of Yeh’s study (1990).
The major findings of this study are as follows: (1) Working memory is a critical cognitive component that can distinguish mathematics underachievers. (2) “Integrative Relative Subproblems” have great effectiveness on mathematics underachievers with the difficulty of representation or retrieval of arithmetic facts from semantic memory. (3) “Line Diagram” have great effectiveness on mathematics underachievers with the difficulty of visuospatial representation of numerical information.
Lastly, this study provides recommendations on academic and practical perspectives according to the study results and its restriction.
關鍵字(中) ★ 關係子題
★ 線圖
★ 數學低成就學生
★ 比較型文字題
★ 工作記憶
關鍵字(英) ★ relative subproblem
★ line diagram
★ mathematics underachiever
★ compare problem
★ working memory
論文目次 第一章 緒論..............................................1
第1節 研究背景與動機....................................1
第2節 名詞定義.........................................3
第二章 文獻探討..........................................5
第1節 數學低成就學生之特質...............................5
第2節 比較型文字題之理解................................7
2.1 比較型文字題的解題歷程............................7
2.2 比較型文字題語句結構對理解之影響..................19
2.3 線圖策略對理解之影響.............................29
第3節 工作記憶理論模型.................................32
第三章 研究方法.........................................47
第1節 研究目的........................................47
第2節 研究對象........................................47
第3節 研究設計........................................47
第4節 研究工具........................................48
第5節 研究程序........................................51
第6節 資料分析........................................52
第四章 結果與討論........................................54
第1節 前測篩選結果.....................................54
第2節 正式研究結果.....................................56
2.1 描述統計........................................57
2.2 二因子混合設計分析...............................57
2.3 單因子重複量測..................................59
2.4 列式答題分析....................................61
第3節 綜合討論........................................65
第五章 結論與建議........................................67
第1節 結論............................................67
第2節 限制............................................68
第3節 建議............................................69
參考文獻................................................70
附錄一 葉雪梅(民79)之實驗材料...........................75
附錄二 語文工作記憶測驗答案紙.............................77
附錄三 視空間工作記憶作業答案紙...........................79
附錄四 正式研究材料......................................86
附錄五 正式研究指導語....................................92
附錄六 語文工作記憶測驗使用同意書.........................93
附錄七 視空間工作記憶作業使用同意書........................94
附錄八 參與研究家長同意書.................................95
參考文獻 吳昭容(民79)。圖示對國小學童解數學應用題之影響。國立臺灣大學心理學研究所獨立研究,未出版,臺北市。
吳明隆(民100)。SPSS 統計應用學習實務:問卷分析與應用統計。新北市:易習圖書。
洪儷瑜(民84)。學習障礙者教育。臺北市:心理出版社。
柯華葳(民88)。基礎數學概念評量。教育部,特殊教育工作小組。
郭生玉(民61)。國中低成就學生心理特質之分析研究。國立臺灣師範大學教育研究所集刊,15,451-534。
翁嘉英(民77)。國小兒童解數學應用問題的認知歷程。國立臺灣大學心理學研究所碩士論文,未出版,臺北市。
陳立倫(民89)。兒童解答數學文字題的認知歷程。國立中正大學心理學研究所碩士論文,未出版,嘉義縣。
陳以青(民93)。學習障礙兒童在工作記憶表現之探討。國立中正大學心理學研究所碩士論文,未出版,嘉義縣。
張新仁(民90)。實施補救教學之課程與教學設計,教育學刊,17,85-106。
教育部(民97)。國民中小學九年一貫課程綱要。臺北市:作者。
張祐瑄(民99)。閱讀理解能力與數學能力對小學六年級低成就學生在數學文字題解題表現之影響。國立臺灣師範大學教育心理與輔導研究所碩士論文,未出版,臺北市。
張春興(民102)。教育心理學-三化取向的理論與實踐(重修二版)。臺北市:東華書局。
曾世杰(民88)。工作記憶測驗。教育部,特殊教育工作小組。
葉雪梅(民79)。國小兒童對「比較」類應用問題的解題行為。國立政治大學教育研究所碩士論文,未出版,臺北市。
蔣大偉(民90)。由工作記憶角度探討數學障礙兒童的表現。國立中正大學心理學研究所碩士論文,未出版,嘉義縣。
蔣文祁(民100)。工作記憶與兒童的數學學習。應用心理研究,52,57-93。
Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation (pp. 89-195). New York: Academic Press.
Baddeley, A. D. (1986). Working Memory. Oxford: Clarendon Press.
Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417-423.
Brooks, L. R. (1967). The suppression of visualization in reading. Quarterly Journal of Experimental Psychology, 19, 289-299.
Baddeley, A. D., Hitch, G. J. (1974). Working memory. In G. A. Bower (Ed.), Recent advances in learning and motivation (pp. 47-90). New York: Academic Press.
Briars, D. J., & Larkin, J. H. (1984). An integrated model of skill in solving elementary word problems. Cognition and Instruction, 1, 245-296.
Baddeley, A. D., Thomson, N., & Buchanan, M. (1975). Word length and the structure of short-term memory. Journal of Verbal Learning and Verbal Behavior, 14, 575-589.
Carpenter, T. P. (1985). Learning to add and subtract: An exercise in problem solving: Multiple research perspective. Philadelphia: Franklin Institute Press.
Cowan, N. (1999). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Model of working memory: Mechanisms of active maintenance and executive control (pp. 62-101). Cambridge, UK: Cambridge University Press.
Carpenter, T. P., & Moser, J. M. (1983). The acquisition of addition and subtraction concepts. In R. Lesh & M. Landau (Eds.), Acquisition of mathematical concepts and processes (pp. 7-44). New York: Academic Press.
Carpenter, T. P., Moser, J. M., & Romberg, T. A. (Eds) (1982). Addition and subtraction: A cognitive perspective. Hillsdale, N. J.: Lawrence Erlbaum Associates.
Diezmann, C. M. (2002). Enhancing students’ problem solving through diagram use. Australian Primary Mathematics Classroom, 7(3), 4–8.
Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19(4), 450-466.
De Corte, E., & Vershaffel, L. (1981). Children’s solution processes in elementary arithmetic problems: Analysis and improvement. Journal of Educational Psychology, 73(6), 765-779
Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102(2), 211-245.
Fuson, K. C., Carroll, W. M., & Landis, J. (1996). Level in conceptualizing and solving addition and subtraction compare word problems. Cognition and Instruction, 14(3), 345-371.
Geary, D. C. (1993). Mathematical disabilities: Cognitive, neuropsychological, and genetic components. Psychological Bulletin, 114(2), 345-362.
Hegarty, M., Mayer, R. E., & Monk, C. A. (1995). Comprehension of arithmetic word problems: A comparison of successful and unsuccessful problem solvers. Journal of Educational Psychology, 87(1), 18-32.
Jitendra, A. K. (2002). Teaching student math problem-solving through graphic representations. Teaching Exceptional Children, 34(4), 34-38.
Jordan, N. C., Kaplan, D., & Hanich, L. B. (2002). Achievement growth in children with learning difficulties in mathematics: findings of a two-year longitudinal study. Journal of Educational Psychology, 94(3), 586-597.
Kintsch, W., & Greeno, J. G. (1985). Understanding and solving word arithmetic problems. Psychological Review, 92, 109-129.
Lewis, A. B. (1989). Training students to represent arithmetic word problems. Journal of Educational Psychology, 8, 521-531.
Lewis, A. B., & Mayer, R.E.(1987). Student’s miscomprehension of relational statements in arithmetic word problems. Journal of Educational Psychology, 79,
363-371.
Little, T. D., & Widaman, K. F. (1995). A production task evaluation of individual differences in the development of mental addition skills: Internal and external validation of chronometric models. Journal of Experimental Child Psychology, 60, 361-392.
Logie, R. H., Gilhooly, K. J., & Wynn, V. (1994). Counting on working memory in arithmetic problem solving. Memory & Cognition, 22(4), 395-410.
Mayer, R. E. (1982). Memory for algebra story problems. Journal of Educational Psychology, 74(2), 199-216.
Miller, S. P., & Mercer, C. D. (1997). Educational aspects of mathematics disabilities. Journal of Learning Disabilities, 30(1), 47–56.
Nesher, P., Greeno, J. G., & Riley, M. S. (1982). The development of semantic categories for addition and subtraction. Educational Studies in Mathematics, 13(4), 373-394.
Norman, D. A., & Shallice, T. (1980). Attention to action: Willed and automatic control of behavior. Chip report 99, University of California, San Diego.
Passolunghi, M. C., & Siegel, L. S. (2001). Short-term memory, working memory, and inhibitory control in children with difficulties in arithmetic problem solving. Journal of Experimental Child Psychology, 80, 44-57.
Riley, M. S., Greeno, J. G., & Heller, J. I. (1982). Development of children′s problem-solving ability in arithmetic. In H. P. Ginsburg (Ed.) The development
of mathematical thinking (pp. 153-196). New York: Academic Press.
Stern, E. (1993). What makes certain arithmetic word problems involving the comparison of sets so difficult for children? Journal of Educational Psychology, 85(1), 7-23.
Swanson, H. L. (1992). Generality and modifiability of working memory among skilled and less skilled readers. Journal of Educational Psychology, 84(4), 473-488.
Uesaka, Y., & Manalo, E. (2011). Task-related factors that influence the spontaneous use of diagrams in math word problems. Applied Cognitive Psychology, 26, 251-260.
Van der Schoot, M., Bakker Arkema, A. H., Horsley, T. M., & Van Lieshout, E. C. D. M. (2009). The consistency effect depends on markedness in less successful but not successful problem solvers: An eye movement study in primary school children. Contemporary Educational Psychology, 34, 58-66.
Verschaffel, L., De Corte, E., & Pauwels, A. (1992). Solving compare problems: An eye movement test of Lewis and Mayer′s consistency hypothesis. Journal of Educational Psychology, 84, 85-94.
Willis, G.B., & Fuson, K.C. (1988). Teaching children to use schematic drawings to solve addition and subtraction word problems. Journal of Educational Psychology, 80(2), 192-201.
指導教授 柯華葳 審核日期 2016-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明