博碩士論文 102187001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.236.214.224
姓名 許哲毓(Che-Yu Hsu)  查詢紙本館藏   畢業系所 學習與教學研究所
論文名稱 國中機率課程:設計與實驗
(Probability Curriculum for the Junior Level: Design and Practice)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2022-7-31以後開放)
摘要(中) 過去十多年,臺灣國中階段機率課程內容顯得較為獨尊「古典機率」而缺乏豐富度,學習時程亦較同儕國家的國民教育階段為晚,故本研究提議為此階段設計新式機率課程內容。研究團隊將自編教材《許氏機率I》和《許氏機率II》並進行教學實驗,實徵檢驗學生的學習成效與新課程之適切性。
本研究為自身檢驗之兩年期縱貫研究,國中階段學生接受前述兩份機率教材的實驗教學,從八年級延續至九年級,並分別施以學習成效測驗與延宕測驗。研究證實我國八、九年級學生可理解主觀、古典與頻率機率之觀點,並處理進階機率概念之問題,如獨立性。研究亦發現藉由樹狀之結構,學生可由圖像理解、使用同階層樹枝上的機率相加、不同階層路徑樹枝上的機率相乘之運算規則。此外,本研究並從機率概念構圖中,發現樹狀圖與獨立性是學習進階機率之基礎。
不過,從學生的作答文本中,本研究發現樹狀結構的學習,可能有兩項錯誤類型。(1)機率值誤植與運算規則之混淆:學生在解讀題意時,未能聯結文字語意與機率間的關係,導致機率值誤植,以及加法、乘法算則時之誤用。(2)無法繪製多組獨立、成對樣本的樹狀圖:學生對於辨識、歸類多組獨立、成對樣本產生困難,導致無法繪製正確圖形。
最後,本研究建議我國國中階段之數學課程設計,可調整機率內容。在教材設計上,多以「生活經驗」連結機率概念,設計不同情境之例題。在教法設計上,可一致利用樹狀圖建立概念並發展算法。在教學活動的設計上,宜讓學生有口語詮釋機率概念的練習,提升學生機率思考。本研究設計的兩份實驗教材,可作為前述課程設計的初步參照;此教材亦為機率概念與圖形思維之連結、機率迷思概念之預防,提出一份基本的設計方案。
摘要(英) Over the decades, the probability curriculum at junior high stage in Taiwan has been characterized exclusively by "classical probability" which misses the richness of probability concepts. Comparing with the national curricular plan of peer countries, the introduction of probability in Taiwan is scheduled relatively late. Therefore, this research proposes to design a new probability course for the secondary stage. The research team will compile textbooks "Hsu′s probability I" and " Hsu ′s probability II" and conduct teaching experiments, so as to test the students′ learning effectiveness and suitability of the new course.
This study is a two-year longitudinal study justified by self-examinations. Junior high school students received experimental teaching according to the forementioned texts from grade 8th to grade 9th, followed by a performance test and a delay test. The results verified that students in grades 8th and 9th can understand the subjective, classical, and frequency probabilistic viewpoints. They can also deal with advanced probabilistic concepts such as independent events. The research also found that with the tree diagram, students can understand and use the principles of adding branches at the same level and multiplying branches on a path of different levels from the tree diagram. In addition, from interpretive structural modeling, it can be seen that tree diagram and independence are the basis for learning advanced concepts in probability.
However, from the students′ texts, this study found that students learning tree diagrams might have two types of difficulties. (1) The confusion between probability value misplacement and operational rules: Students fail to connect the relationship between literal meaning and probability when interpreting the meaning of the question, resulting in probability value misplacement and misuse of addition and multiplication principles. (2) Graph-text conversion of drawing multiple independent and paired sample tree diagrams: Students have difficulties in identifying and classifying multiple independent and paired samples, resulting in the inability to draw correct tree diagrams.
Finally, this study suggests that the curriculum design of junior high school mathematics can be adjusted to include probability content. In the design of teaching materials, the concept of "daily experience" is often used to link the concept of probability and design examples of different situations. In the design of teaching method, the concept of tree diagram can be established and the algorithm can be developed consistently. In the design of teaching activities, it is advisable to allow students to practice oral interpretation of the probability concepts, so as to improve students′ probability of thinking. The experimental texts designed for this study also proposes a basic design plan for the connection between the concept of probability and graphical thinking, and the prevention of the misconceptions of probability.
關鍵字(中) ★ 主觀機率
★ 頻率機率
★ 古典機率
★ 樹狀圖
★ 獨立性
★ 概念詮釋結構模式
關鍵字(英) ★ subjective probability
★ frequency probability
★ classical probability
★ tree diagram
★ independence
★ interpretive structural modeling
論文目次 摘要 I
ABSTRACT II
致謝辭 IV
目錄 V
表目錄 VII
圖目錄 XI
第一章 緒論 1
第一節 研究動機與背景 1
第二節 研究問題 5
第三節 預期的影響 6
第四節 研究範圍和限制 6
第五節 名詞釋義 7
第二章 文獻探討 11
第一節 機率研究 11
第二節 樹狀圖與圖象表徵 15
第三節 機率迷思 19
第四節 臺灣數學課綱之機率單元 22
第五節 外國數學課綱之機率單元 24
第六節 詮釋結構模式 27
第三章 研究方法與課程設計 35
第一節 研究架構 35
第二節 研究對象 35
第三節 研究人員與研究時程 37
第四節 實驗課程之教材設計 38
第五節 實驗課程之教法設計 50
第六節 研究工具 55
第七節 資料收集與編碼 73
第八節 資料分析 75
第四章 結果分析 77
第一節 九年級學前初始狀態分析 77
第二節 九年級後測與延宕測分析 87
第三節 九年級學生之的答題特徵 90
第四節 九年級學生之概念結構圖 117
第五節 討論 126
第五章 結論與建議 135
第一節 結論 135
第二節 建議 137
參考文獻 139
附錄一. 八年級機率測驗 147
附錄二. 九年級機率測驗 149
參考文獻 中華人民共和國教育部(2011)。數學課程標準。北京市:北京師範大學出版社。
日本文部省(2010)。中學校學習指導要領。東京:文部省。
江孟聰(2011)。國小五年級學童幾何概念階層之概念詮釋結構模式分析。未出版之碩士論文,臺中教育大學,臺中市。
呂秀茹、洪文良、林原宏(2009)。結合SCM與CAISM分析國小五年級學童時間化聚計算概念。第一屆科技與數學教育學術研討會論文集,325-334。
呂溪木(2007)。民國75年之前我國數學課程演變。論文發表於國立臺灣師範大學舉辦之「吳大猷先生百歲冥誕科學教育學術研討會─我國近五十年之科學教育發展研討會」,臺北市。
李岳霞(2015)。教孩子堅持不放棄!玩桌遊5大益處。親子天下雜誌電子報,69。取自 http://www.parenting.com.tw/article/506 7838-教孩子堅持不放棄!玩桌遊5大益處/?page=1
李源順(1994)。機率與統計教學研究的文獻探討。國立僑生大學先修班學報,2,313-352。
林秀燕(2004)。以圖示策略融入低年級教學對改變類及比較類加減法文字題學習成效之研究。未出版之碩士論文,國立屏東師範學院,屏東縣。
林原宏(2005)。模糊取向的詮釋結構模式之概念結構分析與應用。教育與心理研究,28,161-183。
林原宏(2010)。多元計分概念詮釋結構模式。教育研究月刊,195,121-124。
林原宏、莊惠雯、易正明(2009)。教師對於學童數學概念之知識管理整合方法-概念詮釋結構模式與分群在時間概念之分析應用。管理科學與統計決策,6(1),45-58。
林福來、單維彰、李源順、鄭章華(2013)。十二年國民基本教育數學領域綱要內容之前導研究報告(計畫編號:NAER-102-06-A-1-02-03-1-12)。新北市:國家教育研究院。
林燈茂(1992)。11-16 歲學童之「相對差異」與「大數法則」概念初探。未出版之碩士論文,彰化師範大學,彰化縣。
教育部(1972)。國民中學課程標準。臺北市:正中書局。
教育部(2008)。國民中小學九年一貫課程綱要數學學習領域。取自 http://teach.eje.edu.tw/data/files/class_rules/math.pdf
教育部(2014)。十二年國民基本教育課程綱要總綱。臺北市:作者。
教育部(2016)。十二年國民基本教育國民中小學暨普通型高級中等學校數學領域課程綱要(草案)。臺北市:作者。
教育部(2018)。十二年國民基本教育國民中小學暨普通型高級中等學校數學領域課程綱要。取自https://www.naer.edu.tw/ezfiles/0/1000/attach/49/pta_17220_2245818_14826.pdf
許天維、林原宏(1994)。詮釋結構模式(Interpretive Structural Modeling)的理論與應用簡介。國教輔導,34(1),31-35。
許芷雲(2019)。八年級機率新課程:設計與實踐。未出版之碩士論文,中央大學,桃園市。
許哲毓、單維彰(2018)。數學「不確定性」教材與評量之分析規準。臺灣教育評論月刊,7(10),170-177。取自https://shann.idv.tw/article/zheyu2018.pdf
許哲毓、單維彰、劉柏伸(2016)。樹狀圖在機率教學的應用-臺灣與英國教科書之比較。論文發表於國立臺灣大學舉辦之「第四屆師資培育國際學術研討會」,臺北市。
陳宜良、單維彰、洪萬生、袁媛(2005)。中小學數學科課程綱要評估與發展研究。教育部,臺北市。
陳欣民、劉祥通(2002)。從兒童機率迷思概念之文獻分析談機率單元的教學與課程。科學教育研究與發展季刊,26,40-51。
陳欣民、劉嘉茹、柳賢(2011)。小六學童在探究教學中的樣本空間概念發展。臺中教育大學學報:數理科技類,25(1),67-91。
陳玟樺(2017)。民國五十至八十年代(1961-2000年)數學課程改革之探究。教育部普通高級中學課程數學學科中心。
陳柏如(2005)。數學學習困難學生之工作記憶、數學問題表徵與數學解題表現之關係分析研究。未出版之碩士論文,臺南大學,臺南市。
陳殷哲、洪文良(2017)。探索教育課程學習成效評估:概念詮釋結構模式。課程與教學季刊,20(3),165-192。
單維彰(2016)。數學教材為支持素養學習所需之解構與重構。論文發表於國家教育研究院舉辦之「我們的教育,我們的未來國際學術研討會」,臺北市。
單維彰(2017)。臺北教育大學,第 19 屆「兩岸三地課程理論」研討會,宣讀 〈以知行識作為數學素養培育架構的課程綱要內涵〉。
單維彰(2018a)。論知行識作為素養培育的課程架構—以數學為例。臺灣教育評論月刊,7(2),101-106。取自P.103。
單維彰、許哲毓、陳斐卿(2018b)。以學前診測與自由擬題探討九年級學生的自發性機率概念。臺灣數學教育期刊,5(2),39-64。
葉律吟(2008)。運用S-P表分析與概念詮釋結構模式於大學部程式設計課程概念之研究。未出版之碩士論文,朝陽科技大學,臺中市。
臺灣PISA國家研究中心(2013)。PISA 數學素養應試指南。取自http://pisa.nutn.edu.tw/download/sample_papers/2009/2013_0311_guide_mathematics.pdf
鄭章華、李源順(2014)。直角三角比的學習應在十二年國教國中課程佔有一席之地。科學教育月刊,368,20—24。
賴盈州(2011)。七年級學生比與比例式概念探究-植基於S-P表和概念詮釋結構模式之整合分析。未出版之碩士論文,臺中教育大學,臺中市。
戴筱玲(2009)。應用CAISM與SCM分析國小六年級學童速率概念。未出版之碩士論文,新竹教育大學,新竹市。
Abu-Bakare, V. (2008). Investigating students’understandings of probability: A Study of grade 7 classroom, The University of British Columbia.
Adams, J. (2006). Risk. Taylor & Francis: Routledge.
Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52, 215-241.
Aspinwall, L. & Shaw, K. L. (2000). Enriching students’ mathematical intuition with probability games and tree diagrams. Mathematics Teaching In the Middle School, 6(4), 214-220.
Awuah, F. K., & Ogbonnaya, U. I. (2020). Grade 12 Students’ Proficiency in Solving Probability Problems Involving Contingency Tables and Tree Diagrams. International Journal of Instruction, 13(2), 819-834.
Batanero, C., Navarro-Pelayo, V., & Godino, J. (1997). Effect of the Implicit Combinatorial Model on Combinatorial Reasoning in Secondary School Pupils. Educational Studies in Mathematics, 32, 181-199.
Bernstein, P.L. (1996). Against the Gods: The remarkable story of risk. John Wiley: New York.
Biggs, J.B., & Collis, K.F. (1982). Evaluating the quality of learning: The SOLO Taxonomy. New York: Academic Press.
Biggs, J.B., & Collis, K.F. (1991). Multimodal learning and the quality of intelligent behaviour. In H. Rowe (Ed.). Intelligence: Reconceptualisation and measurement(pp57-76). Hillsdale, N.J: Laurence Erlbaum.
Bognar, K. & Nemetz, T. (1977). On the teaching of probability at secondary level. Educational Studies in Mathematics, 8, 399-404.
Borovcnik, M., Bentz, H. J., & Kapadia, R. (1991). A probabilistic perspective, In R. Kapadia & M. Borovcnik (Eds.), Chance encounters: Probability in education (pp. 27-71), Boston: Kluwer Academic Publishers.
Caldwell, M. L. (1998). Parents, board games, and mathematical learning. Teaching Children Mathematics, 4(6), 365-367.
Cavanagh, S. (2008). Playing Games in Class Helps Students Grasp Math, Education Week, 27, 43-46.
Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge: The MIT Press.
Clark, R. C., & Mayer, R. E. (2003). E-learning and the science of instruction. San Francisco: Jossey-Bass.
Common Core State Standards Initiative. (CCSSI) (2010). Introduction to the Common Core State Standards. Washington, DC: Author. Retrieved from http://www.corestandards.org/assets/ccssi-introduction.pdf.
Crews, A. (2011). Getting Teachers on “Board”, Knowledge Quest,40(1), 10-13.
English, L. & Watson, J. (2014). Development of fourth-grade students’ understanding of experimental and theoretical probability. In J. Anderson, M. Cavanagh, & A. Prescott (Eds.), Curriculum in focus: Research guided practice. Proceedings of the 37th Annual Conference of the Mathematics Education Research Group of Australasia, Sydney, Australia, 212-222.
English, L., & Watson, J. (2016). Development of probabilistic understanding in fourth grade. Journal for Research in Mathematics Education. In press.
Fischbein, E. (1975). The intuitive sources of probabilistic thinking in children. Dordrecht, The Netherlands: Reidel.
Fischbein, E. (1987). Intuition in science and mathematics. Dordrecht, Holland: Reidel.
Fischbein, E., & Gazit, A. (1984). Does the teaching of probability improve probabilistic intuitions? An exploratory research study. Educational Studies in Mathematics, 15, 1-24.
Friel, S. N., Curcio, F. R., & Bright, G. W. (2001). Making sense of graphs: critical factors influencing comprehension and instructional implications. Journal for Research in Mathematics Education, 32(2), 124-158.
Garfield, J. B. (1999). Thinking about statistical reasoning, thinking, and literacy. Paper presented at First Annual Roundtable on Statistical Thinking, Reasoning, and Literacy.
Green, D. R. (1983). A survey of probability concepts in 3000 pupils aged 11-16 years. In D. R. Grey, P. Holmes, V. Barnett, & G. M. Constable (Eds.), Proceedings of the First International Conference on TeachingStatistics (pp. 766-783). Shefield, UK: Teaching Statistics Trust.
Green, D. R. (1984). Talking of probability. Bulletin of the Institute of Mathematics and its Applications, 20(9), 145-149.
Hamari, J., (2013). Transforming Homo Economicus into Homo Ludens: A Field Experiment on Gamification in a Utilitarian Peer-to-peer Trading Service. Electronic Commerce Research and Application, 12, 236-245.
Harding, R. (1998). Environmental Decision-making: the roles of scientists, engineers and the public. The Federation Press, Sydney.
Hegarty, M., & Kozhevnikov, M. (1999). Types of visual-spatial representations and mathematical problem solving. Journal of Educational Psychology, 91, 684-689.
Jitendra, A. K. (2002). Teaching student math problem-solving through graphic representations. Teaching Exceptional Children, 34(4), 34-38.
Jones, G. A., Thornton, C. A., Langrall, C. W., & Tarr, J. E. (1999). Understanding students′ probabilistic reasoning. In L. V. Stiff, & F. R. Curcio (Eds.), Developing mathematical reasoning in Grades K-12: 1999 Yearbook (pp.146- 155). Reston, VA: National Council of Teachers of Mathematics.
Konold, C. (1991). Understanding students’ beliefs about probability. In E. von Glasersfeld(Ed.), Radical Constructivism in Mathematics Education (pp139-165). Holland: Kluwer.
Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65-99.
Leslie A. and Kenneth L. S. (2000). Enriching students’ mathematical intuition with probability games and tree diagrams. Mathematics Teaching in the Middle School, 6(4), 214-220.
Leslie A. and Kenneth L. S. (2000). Enriching students’ mathematical intuition with probability games and tree diagrams. Mathematics Teaching in the Middle School, 6(4), 214-220.
Lin, Y. H., Hung, W. L., Huang, K. J. & Li, C. C. (2009). PWCISM. [manual and software for PWCISM]. Taiwan, Taichung City: National TaichungUniversity.
Maher, C. A. and Ahluwalia, A. (2014). Counting as a foundation for learning to reason about probability. In Egan J. Chernoff and Bharath Sriraman (Ed). Probabilistic Thinking: Presenting Plural Prespectives. New York: Springer Science Business Media Dordrecht.
National Curriculum (2014). The national curriculum in England. Retrieved from https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/381754/SECONDARY_national_curriculum.pdf.
Nguyen, N. L. (2015). Developing conceptual understanding and probabilistic thinking through tree diagrams (Unpublished master thesis). University of Manitoba, Winnipeg, Manitoba.
Nikiforidou Z. & Pange J. (2007). Sample space and the structure of probability combinations in preschoolers. Proceedings of CERME, 782-790. Larnaca. Cyprus.
Paivio, A. (1971). Imagery and verbal processes, New York: Holt, Rinehart and Winston.
Paivio, A. (1986). Mental representations: A dual coding approach, USA: Oxford University Press.
Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian journal of psychology, 45(3), 255-287.
Piaget, J. & Inhelder, B. (1975). The origin of the idea of chance in children (L. J. Leake & P. D. Burrell & H. D. Fischbein, Trans.). London: Routledge & Kegan Paul. (Original work published 1951)
Polya, J. (1957). How to solve it (2nd ed.). Garden City, NY: Doubleday Books.
Roth, W.-M., & Bowen, G. M. (2003). When are graphs worth ten thousand words? an expert-expert study. Cognition and Instruction, 21(4), 429-473.
Rumsey, D. J. (2002). Statistical literacy as a goal for introductory statistics courses. Journal of statistics education, 10(3), 6.
Scheaffer, R. L., Watkins, A. E., & Landwehr, J. M. (1998). What every high-school graduate should know about statistics. In S. P. Lajoie (Ed.), Reflections on statistics: Learning, teaching, and assessment in grades K-12 (pp. 3-32). Mahwah, NJ: Lawrence Erlbaum Associates
Schield, M. (1999). Statistical literacy: Thinking critically about statistics. Retrieved August 15 2009, from http://web.augsburg.edu/~schield/MiloPapers/984StatisticalLiteracy6.pdf
Schield, M. (2004). Statistical literacy. Retrieved August 15, 2009, from http://www.augsburg.edu/ppages/~schield/
Schmidt, W. H., Mcknight, C. C., & Houang, R. T., Wang, H., Wiley, D. E., Cogan, L. S., et al. (2001). Why schools matter: A cross-national comparison of curriculum and learning. San Francisco: Jossey-Bass.
Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning and Instruction, 13(2), 141-156.
Schoenfeld, A. H. (1979). Explicit heuristic training as a variable in problem-solving performance. Journal for Research in Mathematics Education, 10(2), 173-187.
Schoenfeld, A. H. (1980). Teaching problem-solving skills. The American Mathematical Monthly, 87(10), 794-805.
Schroeder, T. L. (1988). Elementary school children’s use of strategy in playing microcomputer probability games. In R. Davinson & J. Swift (Eds.), Proceedings of the Second International Conference on Teaching Statistics (pp. 51-56). Canada: University of Victoria.
Sharge, G (1983). Misinterpretation of stochastic models. In Scholz, R(Ed.), Decision Making under Uncertainty (pp. 351-361) Amsterdam: New York North-Holland.
Shaughnessy, J. M. (1977). Misconception of probability: An experiment with a small-group, activity-based, model building approach to introductory probability at college level. Educational Studies in Mathematics, 8(3), 295-316.
Shaughnessy, J. M. (1992). Research in probability and statistics: Reflections and directions. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 465-494). New York: National Council of Teachers of Mathematics and MacMillan.
Shin, J. & Steffe, L. P. (2009). Seventh graders use of additive and multiplicative reasoning for enumerative combinative combinative combinatorial problems. In Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.). Proceedings of the 31st annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Atlanta, GA: Georgia State University.
Spiegelhalter, D. (2009). The Times. Times Newspapers Ltd.
Tversky, A. & Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability. Cognitive Psychology, 5, 207-232.
Tversky, A. & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185, 1124-1131.
Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review, 90(4), 293-315.
Uesaka, Y., & Manalo, E. (2011). Task-related factors that influence the spontaneous use of diagrams in math word problems. Applied Cognitive Psychology, 26, 251-260.
Vygotsky, L. S. (1978). Mild in society: The development of higher psychological. Cambridge, MA: Harvard University Press.
Warfield, J.N. (1976). Societal systems planning, policy and complexity. New York: Wiley.
Warfield, J.N. (1982). Interpretive structural modeling (ISM) Group Planning & Problem Solving Methods in Engineering. New York: Wiley.
Watson, J. (2005). The probabilistic reasoning of middle school students. In G. A. Jones (Ed.), Exploring probability in school: Challenges for Teaching and Learning, Springer, Berlin, 145-169.
Watson, J. M. (1997). Assessing statistical thinking using the media. In I. Gal & J. B. Garfield (Eds), In The Assessment Challenge in Statistics Education (pp. 107-121). The Netherlands.
Zichermann, G. and Linder, J. (2013). The Gamification Revolution: How Leaders Leverage Game Mechanics to Crush the Competition, 1st. New York: McGraw Hill.
指導教授 張佩芬 單維彰(Pei-Fen Chang Wei-Chang Shann) 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明