博碩士論文 102221006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:34.204.186.91
姓名 簡正軒(Cheng-Hsuan Jain)  查詢紙本館藏   畢業系所 數學系
論文名稱
(Mathematical Modeling and Numerical Simulation for Application of DCE-MRI in Early Detection of Chronic Liver Disease)
相關論文
★ 非線性塊狀高斯消去牛頓演算法在噴嘴流體的應用★ 以平行 Newton-Krylov-Schwarz 演算法解 Poisson-Boltzmann 方程式的有限元素解在膠體科學上的應用
★ 最小平方有限元素法求解對流擴散方程以及使用Bubble函數的改良★ Bifurcation Analysis of Incompressible Sudden Expansion Flows Using Parallel Computing
★ Parallel Jacobi-Davidson Algorithms and Software Developments for Polynomial Eigenvalue Problems in Quantum Dot Simulation★ An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations
★ Numerical Simulation of Three-dimensional Blood Flows in Arteries Using Domain Decomposition Based Scientific Software Packages in Parallel Computers★ A Parallel Fully Coupled Implicit Domain Decomposition Method for the Stabilized Finite Element Solution of Three-dimensional Unsteady Incompressible Navier-Stokes Equations
★ A Study for Linear Stability Analysis of Incompressible Flows on Parallel Computers★ Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method
★ Numerical Study of Algebraic Multigrid Methods for Solving Linear/Nonlinear Elliptic Problems on Sequential and Parallel Computers★ A Parallel Multilevel Semi-implicit Scheme of Fluid Modeling for Numerical Low-Temperature Plasma Simulation
★ Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems★ A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems
★ A Full Space Lagrange-Newton-Krylov Algorithm for Minimum Time Trajectory Optimization★ Parallel Two-level Patient-specific Numerical Simulation of Three-dimensional Rheological Blood Flows in Branching Arteries
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 肝臟疾病在台灣排名為前十大死亡原因之一。一般來說,肝臟疾病可以分為三個階段,分別為肝纖維化,肝硬化及肝癌。此研究中我們專注的臨床應用是透過DCE-MRI所測得在肝臟內不同時間的顯影劑濃度然後建立一個肝臟血流數學模型,藉此找到一個有效的參數可以去區別不同期的肝纖維化程度。我們假設肝臟裡的構造是種多孔介性界質且血液是穩態的牛頓流體,在數學方程式方面,我們使用Darcy equation 搭配 unsteady convective-diffusive equation。在離散化方面,對於空間上的離散使用stabilized finite element method,而時間上的離散則使用 implicit backward Euler finite difference method。最後我們發現 porosity 是個有效的指標來區別不同的期的肝纖維化程度。
摘要(英) Liver diseases are always on the list of the top 10 causes of death in Taiwan. Generally speaking, the progression of liver disease can be classified into three stages, including liver fibrosis, liver cirrhosis, and liver cancer. Recently, using the noninvasive Dynamic Contrast Enhanced MRI (DCE-MRI) technique for the early detection of chronic liver disease is quite promising. The research focus for clinical application is to define some index related to the relative signal enhancement in a liver to identify the degree of liver fibrosis. In reach the goal, we build both of the mathematical models for blood flows through the liver and the relative signal enhancement scanned by MRI varied with respect to time. Under assumptions that liver is a kind of porous medium, and the blood flow is Newtonian, Laminar, in steady state, the governing equations consist of the Darcy equation weakly coupled with unsteady convective-diffusive equation. The stabilized finite element Darcy solver together with time-dependent convective-diffusive solver are verified by a case with analytical solution and the mathematical models are validated by the experiment of fluid flow through the sponge. In addition, our numerical result is consistent with the clinical data. Finally, we find the porosity is potentially to be a good index to identify the degree of liver fibrosis.
關鍵字(中) ★ 肝臟纖維化
★ 有限元素法
關鍵字(英)
論文目次 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Governing equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Darcy equation weakly coupled with unsteady convective-diffusive equation 5
2.1.1 Darcy equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Convection diffusion equation . . . . . . . . . . . . . . . . . . . 6
2.2 The classical weak formulation . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 The stabilized weak formulations . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Solution method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.1 Discretization of Darcy’s Law by using FEM . . . . . . . . . . . 9
2.4.2 Discretization of convection diffusion equation by using FEM . . 10
3 Code verification and model validation . . . . . . . . . . . . . . . . . . . . . 12
3.1 Matlab code verification . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.1 Darcy’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Convection diffusion equation . . . . . . . . . . . . . . . . . . . 15
3.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Parametric study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Clinical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 Clinical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
viii
參考文獻 [1] R. Bataller and D. A. Brenner. Liver fibrosis. J. Clin. Invest., 115:209, 2005.
[2] A. Bonfiglio, K. Leungchavaphongse, R. Repetto, and J. H. Siggers. Mathematical
modeling of the circulation in the liver lobule. J. Biomech. Eng., 132:111011, 2010.
[3] A. K. Burroughs. Sherlock’s Diseases of the Liver and Biliary System, chapter The
hepatic artery, portal venous system, and portal hypertension: the hepatic veins and
liver in circulatory failure, pages 152–209. Wiley-Blackwell, Oxford, 2011.
[4] I. Campbell. Liver: functional anatomy and blood supply. Anaesth. Intens. Care
Med., 7:49–51, 2006.
[5] E. Cholongitas, M. Senzolo, R. Standish, L. Marelli, A. Quaglia, D. Patch, A. P.
Dhillon, and A. K. Burroughs. A systematic review of the quality of liver biopsy
specimens. Am. J. Clin. Pathol., 125:710–721, 2006.
[6] P. L. Choyke, A. J. Dwyer, and M. V. Knopp. Functional tumor imaging with dynamic
contrast-enhanced magnetic resonance imaging. J. Magn. Reson. Imaging,
17:509–520, 2003.
[7] C. Debbaut, J. Vierendeels, C. Casteleyn, P. Cornillie, D. Van Loo, P. Simoens,
L. Van Hoorebeke, D. Monbaliu, and P. Segers. Perfusion characteristics of the human
hepatic microcirculation based on three-dimensional reconstructions and computational
fluid dynamic analysis. J. Biomech. Eng., 134:011003, 2012.
[8] M. Eatesam, S. M. Noworolski, P. C. Tien, M. Nystrom, J. L. Dodge, R. B. Merriman,
and A. Qayyum. Liver diffusivity in healthy volunteers and patients with
chronic liver disease: Comparison of breathhold and free-breathing techniques. J.
Magn. Reson. Imaging, 35:103–109, 2012.
[9] Christian Eipel, Kerstin Abshagen, and Brigitte Vollmar. Regulation of hepatic
blood flow: the hepatic arterial buffer response revisited. World J. Gastroenterol.,
16:6046, 2010.
[10] L. P. Franca, G. Hauke, and A. Masud. Revisiting stabilized finite element methods
for the advective-diffusive equation. Comput. Methods Appl. Mech. Eng., 195:1560–
1572, 2006.
[11] L. P. Franca and F.-N. Hwang. Refining the submesh strategy in the two-level finite
element method: application to the advection–diffusion equation. Int. J. Numer.
Methods Fluids, 39:161–187, 2002.
[12] Roberta Fusco, Antonella Petrillo, Antonio Avallone, Mario Petrillo, Mario Sansone,
and Paolo Delrio. Dynamic Contrast Enhanced Magnetic Resonance Imaging
in Rectal Cancer. INTECH Open Access Publisher, 2011.
[13] Marc G Ghany, Doris B Strader, David L Thomas, and Leonard B Seeff. Diagnosis,
management, and treatment of hepatitis c: an update. Hepatology, 49:1335–1374,
2009.
[14] A. Masud and T. J. R. Hughes. A stabilized mixed finite element method for Darcy
flow. Comput. Methods Appl. Mech. Eng., 191:4341–4370, 2002.
[15] E. Van Beers B. Materne, R. and, A. M. Smith, I. Leconte, J. Jamart, J.-P. Dehoux,
A. Keyeux, and Y. Horsmans. Non-invasive quantification of liver perfusion with
dynamic computed tomography and a dual-input one-compartmental model. Clin.
Sci., 99:517–525, 2000.
[16] V. Mitra and J. Metcalf. Functional anatomy and blood supply of the liver. Anaesth.
Intens. Care Med., 13:52–53, 2012.
[17] Mi. D. Perisˇic´, D. M. C´ ulafic´, and M. Kerkez. Specificity of splenic blood flow in
liver cirrhosis. Rom. J. Intern. Med., 43:141–51, 2005.
[18] Bachir Taouli, Richard L Ehman, and Scott B Reeder. Advanced mri methods for
assessment of chronic liver disease. Am. J. Roentgenol., 193:14, 2009.
[19] Choon Hua Thng, Tong San Koh, David J Collins, and Dow Mu Koh. Perfusion
magnetic resonance imaging of the liver. World J. Gastroenterol., 16:1598, 2010.
[20] Ichiro Yamada, Winn Aung, Yoshiro Himeno, Tsuneaki Nakagawa, and Hitoshi
Shibuya. Diffusion coefficients in abdominal organs and hepatic lesions: evaluation
with intravoxel incoherent motion echo-planar mr imaging. Radiol., 210:617–623,
1999.
[21] T. Yzet, R. Bouzerar, J.-D. Allart, F. Demuynck, C. Legallais, B. Robert, H. Deramond,
M.-E. Meyer, and O. Bal´edent. Hepatic vascular flow measurements by phase
contrast mri and doppler echography: a comparative and reproducibility study. J.
Magn. Reson. Imaging, 31:579–588, 2010.
[22] Thierry Yzet, Roger Bouzerar, Olivier Baledent, Cedric Renard, Didier Mbayo
Lumbala, Eric Nguyen-Khac, Jean-Marc Regimbeau, H Deramond, and Marc-
Etienne Meyer. Dynamic measurements of total hepatic blood flow with phase contrast
mri. Eur. J. Radiol., 73:119–124, 2010.
43
指導教授 黃楓南(Feng-Nan Hwang) 審核日期 2015-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明