博碩士論文 102221009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.228.21.186
姓名 簡正倫(Cheng-Lun Chien)  查詢紙本館藏   畢業系所 數學系
論文名稱 97課綱機率課程提前至八年級之可行性
(The feasibility of moving up the probability curriculum to grade eight in Taiwan)
相關論文
★ 台灣與韓國之十二年數學課程比較★ 台灣與英國三角函數課程之教科書比較
★ 以自迴歸模型分析神經元訊號間之因果關係★ 自由邊界的保角參數化在Matlab上實現
★ 利用數值模擬探討各式干擾因子對兩電生理訊號因果關係判讀之影響★ 一個物件導向的數學概念學習與診斷工具
★ 增加解析度的凌波演算法★ 提昇後的凌波函數與數值分析
★ Helmholtz 方程與 Wavelet 迭代法★ 影像放大與直脊函數
★ 雙正交凌波函數於血壓與 交感神經活性訊號分析之應用★ 中小學數學創意教學競賽實施之研究
★ 血壓與交感神經活性訊號關係的數學模型★ 國中生胚騰推理與數學能力之相關性研究
★ 台灣與日本之十二年數學課程比較★ 台灣與新加坡之十二年數學課程比較
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 數學教育裡,機率課程占了重要的一席之地,在我國九年一貫課程綱要中,機率課程一直都是被安排在九年級下學期,但機率問題遍佈於日常生活中,且在數學教育裡扮演著非常重要的角色,九年級才學習顯得太晚,研究者希望探究提前學習機率的可能性,使其自發性的概念與生活及學習作更完整的連結,以貫徹數學作為一種語言的真正意涵。
本研究先探究七年級學生在未接受正式機率課程之前,機率自發性概念的狀況,發現已形成直觀地機率概念。但因為操作機率所需之比例計算在七年級才完備,所以本研究藉由機率課程教學活動,探究機率課程在八年級的學習成效。因此欲探討:1 )透過國中機率教學,八年級學生是否有能力可學習國中機率課程?2 )若使用樹狀圖作為機率教學的唯一方法,機率學習成效是否提升?3 )透過機率教學後,八年級與九年級的學習成效差異為何?
本研究之田野學校共有四所國中約三百五十名學生,且分為兩大部分,分別施以「機率學前診測」及國中機率後測與延後測。研究工具分為四部分,分別為機率學前診測、國中機率教學教案、國中機率後測以及國中機率延後測。研究方法使用獨立與成對樣本t檢定及單變異數分析(ANOVA),用來分析各項測驗的分數顯著性,及探討各試題的答對率。
根據研究結果顯示,第一,學生在尚未學習國中機率的課程之前,其實已具備一定的主觀機率與古典機率概念。第二,依照國民中小學九年一貫課程綱要教學,八、九年級學習機率課程之學習成效無差別。第三,八年級學生經過樹狀圖教學後,其機率學習有達到成效。最後再根據研究結果於未來機率課程提出若干建議。
摘要(英) In mathematics education,the probability course takes an important place. In our national syllabus of Grade 1-9 Curriculum Guidelines, probability courses have always been scheduled for the second semester of the ninth grade. But the problems of probability is everywhere in daily life, and they play a very important role in mathematics education. It’s too late to study in the ninth grade, and researchers hope to explore the possibility of learning ahead. We also wish to make the concept of spontaneity more complete with life and learning, and to show the true meaning of implementing mathematics as a language.

This study first explores the situation of the seventh grade students′ chances of spontaneous conception before they have accepted the formal probability course. We found that the concept of intuitive probability has been formed. However, because the skills of proportion required for the probability of operation is not completed in the seventh grade, this study explores the effectiveness of the expedition course in the eighth grade by experimental teaching activities.Therefore, the three research questions are: 1) Through the probabilistic course teaching, do eighth grade students have the ability to learn the national probability course? 2) If the tree diagram is used as the only method of probability teaching, is the probability learning effect improved? 3) What is the difference in learning outcomes between the eighth grade and the ninth grade after the probability teaching?
The samples of this study has about 350 students from four schools and are investigated by three tests, namely, "Pre-experience Diagnosis of Probability" and posttest and retentive test of the probability. The research tools are divided into four parts, which are pre-experience diagnosis of probability, teaching plan of probability, posttest and retentive test of the probability. The study used independent and paired sample t-tests and single-variant analysis (ANOVA) to analyze the significance of the scores of each test and to explore the correct answer rate for each test.

According to the research results, first, students have a certain concept of subjective probability and classical probability before they have taken the course of the probability. Second, according to the Grade 1-9 Curriculum Guidelines of the national primary and secondary schools, there is no difference in the learning outcomes of the eighth and nineth grade students on probability materials. Third, after the eighth grade students have experienced the tree diagram teaching, their probability learning has achieved results. Finally, basing on the research results, some suggestions are made in the future probability course.
關鍵字(中) ★ 數學
★ 機率
★ 樹狀圖
★ 九年一貫課綱
★ 八年級
關鍵字(英) ★ mathematics
★ probability
★ tree diagram
★ Grade 1-9 Curriculum Guidelines
★ grade eight
論文目次 第一章 緒論 1
第一節 研究動機與背景 1
第二節 研究目的 3
第三節 研究問題 4
第四節 名詞釋意 4
第二章 文獻探討 7
第一節 機率概念研究 7
第二節 機率教學 14
第三章 研究方法 19
第一節 研究對象 19
第二節 研究流程 20
第三節 研究工具 23
第四節 資料蒐集 35
第五節 資料分析 38
第四章 研究結果 39
第一節 機率學前診測 39
第二節 機率後測 45
第三節 機率延後測 49
第四節 結果討論 51
第五章 結論與建議 63
第一節 結論 63
第二節 建議 64
參考文獻 66
一、中文部分 66
二、英文部分 67
附錄一、機率學前診測 69
附錄二、國中機率教案 71
附錄三、機率學習單 79
附錄四、國中機率測驗(後測) 85
附錄五、國中機率測驗(延後測) 87
參考文獻 一、中文部分

丁村成 (2008)。走一趟高中機率教學之旅。數學傳播,32(4),33-50。
呂溪木 (1986)。變遷時代中我國數學課程的發展。臺灣省國民學校教師研習
會三十年紀念專刊。新北市:台灣省國民學校教師研習會。
呂溪木 (2007)。民國 75年之前我國數學課程演變。論文發表於「吳大猷先生
百歲冥誕科學教育學術研討會~我國近五十年之科學教育發展」研討會,
臺灣師範大科學教育所,臺北市。
周祝瑛 (2003)。台灣教育改革之研究。論文發表於「民辦教育」研討會。上
海華東師範大學。取自http://www3.nccu.edu.tw/~iaezcpc/
C-%20The%20research%20of%20taiwan%20education%20revolution%201.htm
林以專 (2009)。數獨遊戲對我國國中學生機率樣本空間之影響。國立新竹教育大學碩士論文。
林陳涌等人(2011)。國際數學與科學教育成就趨勢調查 2011國家報告。取自https://tilssc.naer.edu.tw/timss
陳宜良、單維彰、洪萬生、袁媛(2005)。中小學數學科課程綱要評估與發展研究(節錄本)。
陳玟樺 (2017)。民國五十至八十年代(1961-2000年)數學課程改革之探究。教
育部普通高級中學課程 數學學科中心 (臺北市立建國高級中學)。
翁秉仁 (2016)。小朋友適合學機率嗎?科學人雜誌,170。取自http://sa.ylib.com/
MagArticle.aspx?Unit=columns&id=3058
教育部 (1971)。高中數學課程標準。臺北市:正中書局。
教育部 (1975)。國民小學課程標準。臺北市:正中書局。
教育部 (2008)。國民中小學九年一貫課程綱要數習領域。取自http://
teach.eje.edu.tw/data/files/class_rules/math.pdf
教育部 (2014)。十二年國民基本教育課程綱要總綱。取自http://www.naer.
edu.tw/ezfiles/0/1000/attach/87/pta_5320_2729842_56626.pdf
梁淑坤 (1994)。「擬題」的研究及其在課程的角色。國民小學數學科新課程概說
(低年級)。新北市:台灣省國民學校教師研習會。
許哲毓、單維彰、劉柏伸 (2016)。樹狀圖在機率教學的應用-臺灣與英國教科書
之比較。第四屆師資培育國際學術研討會,國立臺灣大學
許哲毓、單維彰(2018)。數學「不確定性」教材與評量之分析規準。論文發表於台灣教育評論月刊,頁170-177。
張吉逸 (2016)。從自由擬題探究九年級學生的機率思維發展。國立中央大學碩士論文。
國家教育研究院(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校-數學領域。取自https://www.naer.edu.tw/files/15-1000-14987,c639-1.php
單維彰、陳斐卿、許哲毓 (2018)。以學前診測與自由擬題探討九年級學生的自發性機率
概念。科技部專題研究成果報告(編號:NSC-104-2511-S-008-002-MY2)。
甯平獻 (2010)。數學教材教法。臺北市:五南。
劉秋木 (1996)。 國小數學科教學研究。臺北市:五南。
鄭章華、單維彰 (2015)。素養導向之數學教材初探。邁向十二年國教新課綱的
第一哩路:從課綱轉化到學校教育的系統性變革學術研討會,國家教育研究
院。

二、英文部分

Bognar & Nemetz(1977). On the teaching of probability at secondary level.
Educational Studies in Mathematics, 8 , 399-404.
Charles,R . I., & Silver, E. A. (Eds.). (1988). Thet eachinga nd assessing of
mathematical problem solving.Reston, VA: National Council of Teachers of
Mathematics.
Ellerton, N. F. (1986). Children′s made-up mathematics problems: a new perspective
on talented mathematicians. Educational Studies in Mathematics, 17(3),
261-271.
Hart, K. (Ed.). (1981). Children′s understanding of mathematics: 11-16.
London: John Murray.
Hashimotto, Y. (1987). Classroom parctice of problem solving in Japanese elementary
schools. In J. P. Becker & T. Miwa (Eds), Proceedings of the U. S.-Japan
seminar on mathematical problem solving (pp. 94-119). Carbon dale, IL:
Southern Illinois University.
Jones, G. A., Thornton, C. A., Langrall, C. W., & Tarr, J. E. (1999). Understanding
students′ probabilistic reasoning. In L. V. Stiff, & F. R. Curcio (Eds.),
Developing mathematical reasoning in Grades K-12: 1999 Yearbook (pp.146-
155). Reston, VA: National Council of Teachers of Mathematics.
Li, J. (2000)., Chinese students understanding of probability, Unpublished doctoral
dissertation,National Institute of Education. Nanyang Technological University,
Singapore, 2000.
NCTM (1989). Curriculum and Evaluation Standards for School Mathematics
National Council of Teachers of Mathematics Commission on Standards for
School Mathematics. Reston, VA: NCTM
NCTM (2000). National Council of Teachers of Mathematics (2000). Principles and
standards for school mathematics. Reston, VA: NCTM
Piaget, J., & Inhelder, B. (1975). The origin of the idea of chance in children (L. J.
Leake & P. D. Burrell & H. D. Fischbein, Trans.). London: Routledge & Kegan
Paul. (Original work published 1951)
Reitman, W.(1965). Cognition and thought. New York:Wiley.
Shaughnessy, J. M. (1992). Research in probability and statistics: Reflections and
directions. In D. A. Grouws (Ed.), Handbook of research on mathematics
teaching and learning (pp. 465-494). New York: National Council of Teachers
of Mathematics and MacMillan.
Mullis, I. V. S., Martin, M. O., Foy, P., & Hooper, M. (2016). TIMSS 2015 International Results in Mathematics. Retrieved from Boston College,
TIMSS & PIRLS International Study Center website:
http://timssandpirls.bc.edu/timss2015/international-results/
Writz, R. W. & Kahn, E. (1982). Another look at application in elementary school
mathematics. Arithmetic Teacher, 30,21-25.
指導教授 單維彰 審核日期 2019-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明