博碩士論文 102221601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.238.184.78
姓名 林碩(Shuo Lin)  查詢紙本館藏   畢業系所 數學系
論文名稱
(Mirror Symmetry and The Quintic Model)
相關論文
★ 一個在T*RP2上的單調拉格朗日環面★ The isotopy classification of contact structures on S3
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鏡像對稱源於弦論,它是指一對卡拉比-丘流形$X$與$check{X}$之間的一種非常特殊的關係。粗略地說,鏡像對稱交換了$X$上關於其複結構的訊息和$check{X}$上關於其辛結構的訊息,反之亦然。在本文中,我們簡要介紹對於了解最基本的鏡像對稱所需要的數學工具,並在最後仔細地研究五次式這個例子。

我們首先回顧複幾何基本的背景知識,接著介紹關於卡拉比-丘流形的經典結果,比如形變,BTT定理,凱勒錐。進而我們研究複模空間以及凱勒模空間上的一些基本結構,並把成對的鏡像流形相應的模空間上的訊息對等起來,給出一般性的鏡像對稱猜想的敘述。最終,我們將這一想法應用到由五次式所給出的卡拉比-丘三維流形上。
摘要(英) Mirror symmetry is a mysterious relationship between pairs of Calabi-Yau manifolds $X$ and $check{X}$, arising from string theory. Roughly speaking, it exchanges things related to the complex structure of $X$ with things related to the symplectic structure of $check{X}$, and vice versa. In this article, we will give an introduction to the tools needed to understand the elementary mirror symmetry conjecture. It will end with a detailed working out of the example of the quintic.

We begin with the necessary background on complex geometry, and then introduce some of the classical results about Calabi-Yau manifold including deformation, BTT theorem and K"ahler cone. Next we study some essential structures on the complex moduli space and the K"ahler moduli space. We equate the data of structures arising on these two sides for mirror pairs of Calabi-Yau manifolds, and state the general mirror symmetry conjecture, and finally using this idea carry out the example of quintic Calabi-Yau 3-fold.
關鍵字(中) ★ 鏡像對稱
★ 五次式
★ 卡拉比-丘流形
關鍵字(英) ★ mirror symmetry
★ quintic
★ Calabi-Yau manifold
論文目次 摘要 i
Abstract ii

Contents

1 Background on Complex Geometry 1
1.1 Sheaf Language 1
1.2 Complex Manifolds and Holomorphic Bundles 5
1.3 Kahler Manifolds and Hodge Theory 12
1.4 Chern Classes 19

2 The Classical Geometry of Calabi-Yau Manifolds 25
2.1 Complex Structure Deformation and Bogomolov-Tian-Todorov Theorem 25
2.2 Kahler Cone and Complexified Kahler Moduli Space 32
2.3 A Basic Example of Calabi-Yau Manifolds: Quintic 33

3 J-holomorphic Curves and Gromov-Witten Invariants 39
3.1 J-holomorphic Curves 39
3.2 Gromov-Witten Invariants and (1,1)-Yukawa Coupling 43

4 Variation and Degeneration of Hodge Structures 45
4.1 Variation of Hodge Structures and (1,2)-Yukawa Coupling 45
4.2 Period Maps 49
4.3 Degeneration of Hodge Structures 51

5 Mirror Conjecture 62

6 Quintic, Revisit 63
6.1 Batyrev′s Construction and The Mirror Family of Quintic 63
6.2 Complex Moduli Space of $check{X}$ 66
6.3 The Periods of $check{X}$ 67
6.4 Picard-Fuchs Equations 70
6.5 Equations with Regular Singular Points 72
6.6 Canonical Coordinates 75
6.7 The (1,2)-Yukawa Coupling on $check{X}$ 77

References 80
參考文獻 A. Bertram, Another way to enumerate rational curves with torus actions, Inventiones mathematicae 142 (2000), 487-512.

G. Bredon, Topology and Geometry, Graduate Texts in Mathematics 139, Springer-Verlag, 1993.

P. Candelas, X. de la Ossa, P. Green, and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Physics B359 (1991), 21-74.

A. Cannas da Silva, Lectures on Symplectic Geometry, Lecture Notes in Mathematics 1764, Springer-Verlag, 2001.

E. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, 1955.

D. Cox, J. Little, and H. Schenck, Toric Varieties, Graduate Studies in Mathematics, Volume 124, American Mathematical Society, 2011.

A. Givental, Equivariant Gromov-Witten invariants, International Mathematics Research Notice 13 (1996), 613-663.

P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, 1978.

M. Gross, D. Huybrechts, and D.D. Joyce, Calabi-Yau Manifolds and Related Geometries, Universitext, Springer-Verlag, 2003.

R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag, 1977.

K. Hori, S. Katz, A. Klemm et al., Mirror Symmetry, Clay Mathematics Monographs, Vol. 1, AMS, Clay Math. Institute, 2003.

D. Huybrechts, Complex Geometry, Universitext, Springer-Verlag, 2005.

D.D. Joyce, Riemannian Holonomy Groups and Calibrated Geometry, Oxford Graduate Texts in Mathematics 12, Oxford Press, 2006.

S. Katz, Enumerative Geometry and String Theory, Student Mathematical Library, vol. 32, AMS, IAS, 2006.

B. Lian, K. Liu, and S.-T. Yau, Mirror principle. I, Asian Journal of Mathematics 1 (1997), 729-763.

D. McDuff and D. Salamon, J-holomorphic Curves and Symplectic Topology, American Mathematical Society colloquium publications, 2004.

D. Morrison, Picard-Fuchs equations and mirror maps for hypersurfaces, Essays on mirror manifolds (S.-T. Yau, ed.), International Press, Hong Kong, 1992, pp. 241-264.

C. Voisin, Hodge Theory and Complex Algebraic Geometry I, Cambridge Studies in Advanced Mathematics 76, Cambridge University Press, 2002.

C. Voisin, Hodge Theory and Complex Algebraic Geometry II, Cambridge Studies in Advanced Mathematics 77, Cambridge University Press, 2003.
指導教授 姚美琳(Mei-Lin Yau) 審核日期 2016-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明