博碩士論文 102222003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.119.213.235
姓名 林輝華(Hui-hua Lin)  查詢紙本館藏   畢業系所 物理學系
論文名稱 以基質輔助脈衝雷射蒸鍍法製備聚3-己基噻酚/(6,6)-苯基-C61-丁酸甲酯有機太陽能電池
(Fabrication of P3HT/PCBM organic photovoltaic cells with matrix assisted pulsed laser evaporation)
相關論文
★ GW準粒子於Mn3O4和GaN的激發態性質計算★ 混合物種與低溫冷凍原子團簇噴流的發展
★ 以雷射脈衝對磁性薄膜進行超快磁轉化及其動態時間解析★ 以脈衝雷射沈積製造FeBO3薄膜
★ 共焦拉曼與螢光顯微鏡之發展及其在材料診斷上之應用★ 以光激發黑色素來清除細胞環境中之活性氧之探討
★ 發展在電漿波導式雷射電漿波電子加速器中誘發電子注入與X 光產生之技術★ 莫斯堡光譜儀的建造以及其應用到FeCO3薄膜的診斷
★ 發展利用另一道脈衝雷射在脈衝雷射沉 積技術中成長碳薄膜的雷射同步過程進 行碳薄膜晶向之控制★ 研究以雷射進行基板之前置處理來達到控制脈衝雷射沉積的矽鍺量子點的尺寸分布的可行性
★ 以超短脈衝雷射沉積技術製作鍺/矽薄膜之研究★ 一百兆瓦雷射系統之建造與在結構化電漿波導之應用
★ 藥物劑量與復原時間影響光動力療法疫苗之功效的系統性研究★ 光控制實用的材料製程在PEM燃料電池及光電元件上的應用
★ 以脈衝雷射沉積與脈衝雷射退火製造鍺/矽量子點與成長鍺薄膜於單晶矽上並應用於光偵測器的研究★ 以工程技術調控SnSe和CaZn2Sb2熱電材料於廢回收之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文是在研究高分子材料型的有機太陽能電池(Organic Photovoltaic cell,OPV),OPV是以有機半導體為主要的材料,而有機半導體在吸收太陽光的能力至少需要100~200 nm的厚度才能將其百分之九十以上的太陽能完全吸收,但是因吸收太陽光的有機半導體所產生出來的激子(exciton)擴散長度只有10~20 nm,而在激子擴散過中只有接觸到OPV中的電子供給者(donor)和電子接受者(acceptor)的介面時,因化學位勢的不同使得激子才能有效分離產生電子(electron)電洞(hole)對,電洞和電子在分別經由donor跟acceptor傳導到電極產生電能,所以在製備OPV時donor跟acceptor的接觸面積成為影響效率的重要課題。
本論文使用基質輔助脈衝雷射蒸鍍法(matrix assisted pulse laser evaporation,MAPLE)來製備OPV中的主動層(active layer),而主動層所使用的材料是聚3-己基噻酚(P3HT)和(6,6)-苯基-C61-丁酸甲酯(PCBM),我們透過MAPLE加上填充氣體的技術將P3HT形成奈米顆粒堆疊的方式成膜來增加膜的孔隙度,再用PCBM透過MAPLE的技術將P3HT薄膜的奈米孔隙填滿,以達到提高P3HT(donor)跟PCBM(acceptor)的接觸面積進而提升OPV的光電轉換效率,我們也嘗試了將P3HT跟PCBM一起溶在鄰二甲苯中做成靶材,用MAPLE的技術成長本體異質接面(bulk heterojunction)的OPV結構以提高P3HT和PCBM的接觸面積來提升效能,並且在MAPLE過程當中填充氣體使得P3HT和PCBM兩相分離(phase segregation)達到如同傳統製程中溶劑退火(solvent annealing)的效果。
經由實驗結果發現,具有奈米結構之OPV是雙層(bilayer)結構之OPV效率的1.5倍,而有經過熱退火(thermal annealing)的bulk heterojunction OPV又比具有奈米結構的OPV效率高2倍,但是光電流過低的問題推測是因為在我們用MAPLE製備OPV的過程中,讓P3HT和PCBM膜中增加許多缺陷導致提高電子電洞對再復合(recombination)的機率。
摘要(英) The thesis is research of Organic Photovoltaic cell (OPV) of high molecular material. OPV is mainly consist of organic semiconductor. When the organic semiconductor can absorb above 90% solar power, the thickness of it needs at least 100~200 nm. But the diffusion length of exciton which is produced by organic semiconductor which absorb solar power is only 10~20 nm. Only if the exciton contact the interface between donor and acceptor of OPV in diffusion process, the exciton will efficiently separate into the hole and electron due to difference of chemical potential. The hole and electron respectively conduct through donor and acceptor to electrode to produce electricity. Hence it is an important issue that contact area between donor and acceptor influences efficiency of OPV.
In the thesis, we used matrix assisted pulse laser evaporation(MAPLE) to fabricate the active layer of OPV. The materials of active layer were poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C61-butyric acid Methyl ester(PCBM). We produced the film composed of P3HT nanoparticle with MAPLE and backfilled gas technique in order to increase porosity of the film. Then we made PCBM fill in P3HT film nanopores with MAPLE to increase the contact area between P3HT(donor) and PCBM(acceptor) and enhance the efficiency of OPV. We also tried to dissolve P3HT and PCBM in the same solvent(ortho-xylene) to made target in MAPLE with cooling system, and we produced the bulk heterojunction OPV with MAPLE to increase the contact area between P3HT and PCBM and enhance the efficiency of OPV. We also made P3HT and PCBM produce phase segregation with MAPLE and backfilled gas technique in order to achieve the effect of solvent annealing in conventional process.
According to the result, we found the nanostructured OPV efficiency is half times higher than the bilayer one, and the thermal annealing bulk heterojunction OPV efficiency is twice higher than the nanostructured one. However, we guessed the reason of low current is there are many defects in film and lead to increase possibility of recombination in MAPLE process.
關鍵字(中) ★ 基質輔助脈衝雷射蒸鍍法
★ 有機太陽能電池
★ 聚3-己基噻酚
★ (6,6)-苯基-C61-丁酸甲酯
★ 成核
★ 本體異質接面
關鍵字(英) ★ matrix assisted pulsed laser evaporation
★ organic photovoltaic cell
★ P3HT
★ PCBM
★ nucleation
★ bulk heterojunction
論文目次 中文摘要 i
英文摘要 ii
謝誌 iii
目錄 iv
圖目錄 vi
表目錄 viii
一、 緒論 1
1.1 前言 1
1.1.1 太陽能 1
1.1.2 太陽能電池 2
1.1.3 有機太陽能電池 3
1.1.4 基質輔助脈衝雷射蒸鍍法應用在有機太陽能電池 7
1.2 研究動機 9
二、 理論基礎 10
2.1 基質輔助脈衝雷射蒸鍍技術 10
2.1.1 簡介 10
2.1.2 機制 11
2.1.3 基本參數 12
2.1.4 成核與薄膜形貌 13
2.2 分析儀器之原理 15
2.2.1 紫外-可見光光譜儀 15
2.2.2 原子力顯微鏡 17
2.2.3 太陽能電池電流電壓特性量測與分析系統 19
三、 實驗方法與材料 20
3.1 實驗策略 20
3.2 基質輔助脈衝雷射蒸鍍技術實驗站 21
3.2.1 架設 21
3.2.2 靶材製作方法 28
3.3 有機太陽能電池架構 29
3.3.1 材料介紹 29
3.3.2 封裝流程 31
3.4 分析儀器 32
四、 實驗結果與討論 35
4.1 用基質輔助脈衝雷射蒸鍍法製備聚3-己基噻酚和(6,6)-苯基-C61-丁酸甲酯 35
4.1.1 數據處理方法和基板 35
4.1.2 對照樣本 37
4.1.3 分子吸收光譜與雷射通量的關係 38
4.1.4 分子吸收光譜與靶材濃度的關係 42
4.1.5 最佳化參數與對照樣本的比較 43
4.2 用基質輔助脈衝雷射蒸鍍法製備聚3-己基噻酚/(6,6)-苯基-C61-丁酸甲酯的有機太陽能電池 45
4.2.1 策略一之吸收光譜與鍍率校正 45
4.2.2 策略二之吸收光譜與鍍率校正 48
4.2.3 奈米結構與材料分布 52
4.2.4 電流電壓特性曲線與電池效率 55
五、 結論 58
5.1 總結 58
5.2 未來工作 58
參考文獻 59
參考文獻 [1] 張正華, 李陵嵐, 葉楚平 且 楊平華, 有機與塑膠太陽能電池, 台北市: 五南圖書出版股份有限公司, 2007.
[2] “太陽能電池,” 維基百科, [線上]. Available: https://zh.wikipedia.org/wiki/%E5%A4%AA%E9%98%B3%E8%83%BD%E7%94%B5%E6%B1%A0.
[3] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, "Solar cell efficiency tables (version 43)," PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, p. 1–9, 12 11 2013.
[4] A. Moliton and J.-M. Nunzi, "How to model the behaviour of organic," Polymer International, pp. 55:583-600, 29 3 2006.
[5] S. R. Forrest, "The Limits to Organic Photovoltaic Cell Efficiency," MRS Bulletin, p. 30:28~32, 1 5 2005.
[6] K. M. Coakley and M. D. McGehee, "Conjugated Polymer Photovoltaic Cells," Chemical material, pp. 1-10, 29 6 2004.
[7] A. P. C. et al, "Poly-(3-hexylthiophene)/[6,6]-phenyl-C61-butyric-acid-methyl-ester bilayer deposition by matrix-assisted pulsed laser evaporation for organic photovoltaic applications," APPLIED PHYSICS LETTERS, pp. 073306:1-4, 27 1 2012.
[8] R. Eason, PULSED LASER DEPOSITION OF THIN FILMS, UK: JOHN WILEY & SONS, INC., 2007.
[9] "Growth of polyalkylthiophene films by matrix assisted pulsed laser evaporation," Organic Electronics, pp. 5:29-34, 19 11 2003.
[10] "Nucleation," wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Nucleation.
[11] J. H. N. et al, "Aligned Photoelectrodes with Large Surface Area Prepared by Pulsed Laser Deposition," The Journal of Physical Chemistry C, pp. 116:8102-8110, 28 3 2012.
[12] "Ultraviolet–visible spectroscopy," wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Ultraviolet-visible_spectroscopy.
[13] D. M. W. F. J. H. a. S. R. C. Douglas A. Skook, Fundamentals of Analytic Chemistry, 8th edition, Belmont, CA: Mary Finch, 2013.
[14] "Beer-Lambert_law," wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Beer-Lambert_law.
[15] 蔡定平, 奈米檢測技術, 新竹市: 國家實驗研究院儀器科技研究中心, 2009.
[16] "Atomic force microscopy," wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Atomic_force_microscopy.
[17] 陳建淼, “科學online-AFM,” 國立臺灣大學科學教育發展中心, [線上]. Available: http://highscope.ch.ntu.edu.tw/wordpress/?p=17916.
[18] 郭浩中, 賴芳儀, 郭守義 且 蔡閔安, 太陽能光電技術, 台北市: 五南圖書出版股份有限公司, 2012.
[19] C. Honsberg and S. Bowden, "Measurement of Solar Cell Efficiency," PVEDUCATION.ORG, [Online]. Available: http://www.pveducation.org/pvcdrom/characterisation/measurement-of-solar-cell-efficiency.
[20] M. K. et al, "ULTRAVIOLET-VISIBLE DIODE-ARRAY SPECTROPHOTOMETER AS A DETECTOR FOR GAS CHROMATOGRAPHY," Analytica Chimica Acta, pp. 171:375-379, 19 10 1984.
[21] S. Kraner, Measurement of charge carrier mobility and charge carrier concentration of organic photovoltaic diodes under in situ light soaking conditions and varying temperatures, 2011.
[22] “OPV教育訓練課程講義,” 新世代太陽能電池研究中心.
[23] D. S. Ginley, Fundamentals of Materials for Energy and Environmental Sustainability, CAMBRIDGE UNIVERSITY PRESS, 2011.
[24] M. D. I. et al, “p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells,” PNAS, pp. 2783-2787, 26 2 2008.
[25] "Dimension Icon," BRUKER, [Online]. Available: https://www.bruker.com/products/surface-analysis/atomic-force-microscopy/dimension-icon/overview.html.
[26] R. et al, "Degradation process in organic thin film devices fabricated using P3HT," journal of physics, pp. 68:489-498, 3 2007.
[27] C. Larsen, Fabricating designed fullerene nanostructures for functional electronic devices, Sweden: Umeå, 2014.
[28] A. Salleo, "Charge transport in polymeric transistors," materials today, pp. 10:38-45, 3 2007.
[29] "Polythiophene," wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Polythiophene.
[30] K. M. Coakley and M. D. McGehee, "Conjugated Polymer Photovoltaic Cells," Chemical Material, pp. 1-10, 29 6 2004.
[31] S. Y. et al, "Controlling PCBM aggregation in P3HT/PCBM film by a selective solvent vapor annealing," Chinese Science Bulletin, pp. 22:2767-2774, 8 2013.
[32] V. S. et al, "Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films," Chemical Physics Letters, pp. 411:138-143, 8 6 2005.
[33] G. L. et al, "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends," nature materials, pp. 4:864-868, 9 10 2005.
[34] M. C.-Q. et al, "Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends," nature materials, pp. 7:158-164, 2 2008.
[35] W. M. et al, "Thermally Stable, Efficient Polymer Solar Cell with nanoscale Control of the Interpenetrating Network Morphology," ADVANCED FUNCTIONAL MATERIALS, pp. 15:1617-1622, 2005.
[36] M. O. R. et al, "Pathways for the degradation of organic photovoltaic P3HT:PCBM based devices," Solar Energy Materials & Solar Cells, pp. 92:746-752, 2008.
指導教授 陳賜原(Szu-yuan Chen) 審核日期 2015-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明