博碩士論文 102222013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.235.105.97
姓名 蔡佩仰(Pei-Yang Cai)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Methanol Decomposition on Pt nanoclusters supported by Graphene on Pt(111):A combined RHEED, IRAS and TPD study)
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Pt金屬的奈米團簇利用蒸鍍的方法成長在 Pt(111) 為基底的石墨烯(graphene)上,利用高能電子繞射儀(reflection high energy electron diffraction, RHEED)來研究。我們發現 Pt 金屬的奈米團簇有很好的排列行為而且結構及晶格間距受到底層石墨烯的影響,經由高能電子繞射儀的結構研究,我們發現石墨烯會以非常多不同的方向生長,其中主要的方向是石墨烯晶格平行於 Pt(111) 晶格,和一個次要方向石墨烯晶格與 Pt(111) 晶格相差30°。Pt 金屬的奈米團簇是 fcc 的結構並且沿著平行 Pt(111) 表面以 (111) 面方向成長,Pt 金屬的奈米團簇會也會隨著石墨烯以非常多不同的方向生長的,但有一個主要方向是 [11-2] 方向平行於 Pt(111) 的 [11-2] 方向。而 Pt 金屬奈米團簇在表面法向量方向的晶格常數(4.02 – 4.34 Å)相對於 fcc 結構的 Pt 塊材(3.92 Å)較為膨脹,這樣會使 Pt 金屬奈米團簇的 (111) 面有比較好的晶格去吻合表面的石墨烯。晶格常數會因鍍量而有所下降,但不會隨退火溫度改變。
我們利用熱脫附質譜術及反射式紅外線光譜吸收儀來研究甲醇於白金奈米粒子上的分解反應之觸媒模型。從 IR 吸收光譜上以 CO 作為探測物的結果發現 CO 傾向於吸附在 Pt 奈米粒子的 on-top site 上,沒有其他像是 bridge或是 hollow的吸附被探測到。由 被探測到。由 CO 的 TPD脫附譜線則顯示CO 的脫附有兩個峰值:一位於 390 K(在 Pt 單晶上也有出現),一個則位於 470 K(我們認為是來自於較小的 Pt 奈米粒子上脫附的 CO )。
然而,無論反射式紅外線光譜及熱脫附質譜術的結果都指出,單層吸附的甲醇會在 136 K 左右完全脫附光,低於甲醇分解反應在 Pt(111) 單晶的溫度(200 K). 沒有任何甲醇分解反應的產物被偵測到,暗示著甲醇在以石墨烯/ Pt(111) 為基底上的白金奈米粒子上不會進行分解反應。
摘要(英) The Pt nanoclusters grown from vapor deposition on single layer graphene have been studied by reflection high energy electron diffraction (RHEED). The results show that the Pt nanoclusters are highly crystalline and their structures and lattice constant are significantly affected by the graphene/Pt(111) substrate. Structural analysis based on the RHEED patterns indicates that graphene grow with varied orientations but two are primary: graphene[1000]//Pt(111)[11-2] and graphene[1-100]//Pt(111)[11-2]. Pt nanoclusters grew as fcc phase, with their (111) facets parallel to the graphene surface and with varied orientations with respect to graphene/Pt(111); the primary one has its [11-2] direction parallel to [11-2] direction of Pt(111), denoted as Pt(111) clusters [11-2]//Pt(111)[11-2]. The clusters grew with two kinds. Their orientations differ by 60˚ from each other. Since fcc Pt clusters in (111) orientation has six-fold symmetry, the two kinds of clusters are at the same orientation with respect to the substrate. The lattice constant of the Pt nanoclusters is expanded only in surface normal direction (4.02 – 4.34 Å), relative to that of fcc bulk Pt (3.92 Å). The lattice constant decreases with the coverages, but indenpent of annealing temperature.
Methanol decomposition on Pt nanoclusters supported by graphene as a model system is studied by IRAS and TPD. The study contained two parts: surface structures of Pt clusters probe with CO and methanol decomposition on Pt nanoclusters. The IRAS spectra with CO as a probe show that the CO adsorbed on on-top site of Pt nanoclusters; no other site such as bridge or hollow site have been detected. The CO TPD spectra show that CO desorbed with two distinct peaks, one at 390 K for CO on terrace sites, which is observed for CO on Pt single crystal results and the other at about 470 K for CO on low-coordinated site, which is observed for CO on small Pt clusters. Both IRAS and TPD spectra for methanol experiments show that the monolayer methanol on the clusters compeletly desorb about 136 K, significantly lower than that for methanol desorption from Pt(111) single crystal (170 K) and also that for methanol decomposition on Pt(111) single crystal (200 K). No CO and hydrogen produced from decomposition is detected, indicating that methaol on the Pt nanoclusters on graphene/Pt(111) does not decompose.
關鍵字(中) ★ 甲醇分解
★ 白金(111)
★ 石墨烯
★ 高能電子繞射
★ 紅外光吸收儀
★ 熱程控脫附術
關鍵字(英) ★ Methanol Decomposition
★ Pt(111)
★ Graphene
★ RHEED
★ IRAS
★ TPD
論文目次 摘 要 I
Abstract II
List of Figure VI
List of Table XII
Chapter 1 Introduction 1
Chapter 1 References 2
Chapter 2 Literature Survey 4
2.1 Graphene growth on Pt(111) and other substrates 4
2.1.1 Graphene/Platinum(111) 4
2.1.2 Graphene/Ruthenium(0001) 10
2.2 Pt nanoclusters on Graphene/Pt(111) 15
2.3 Decomposition of Methanol on Pt(111) single crystal 18
Chapter 2 References 24
Chapter 3 Experimental Apparatus and Procedure 26
3.1 Apparatus and Ultrahigh Vacuum (UHV) System 26
3.1.1 Introduction to Vacuum 27
3.1.2 Reflection High Energy Electron Diffraction (RHEED) 29
3.1.3 Low Energy Electron Diffraction (LEED) 33
3.1.4 Auger Electron Spectroscopy (AES) 34
3.1.5 Thermal Desorption Spectroscopy (TDS) 35
3.1.6 Infrared reflection adsorption spectroscopy (IRAS) 38
3.1.7 Fourier Transform Interferometers 42
3.2 Experimental Procedures 44
3.2.1 Sample Cleaning 45
3.2.2 Graphene Growth 46
3.2.3 Deposition Procedures 46
Chapter 3 References 47
Chapter 4 Results and discussions 48
4.1 The structure of Pt clusters on graphene/Pt(111) 48
4.1.1 Pt(111) surface 48
4.1.2 The structure of Graphene on Pt(111) 50
4.1.3 The structure of Pt nanoclusters on Graphene/Pt(111) 54
4.1.4 Coverage Effect of Pt nanoclusters on Graphene/Pt(111) 61
4.1.5 Annealing Effect of Pt nanoclusters on Graphene/Pt(111) 61
4.2 CO adsorbed on Pt/Graphene/Pt(111) 64
4.2.1 TPD spectra for CO on Pt/Graphene/Pt(111) 64
4.2.2 IRAS spectra for CO on Pt/Graphene/Pt(111) 65
4.3 The reaction of methanol on Pt/Graphene/Pt(111) 67
4.3.1 TPD spectra for methanol on Pt clusters 67
4.3.2 IRAS spectra for methanol on Pt/Graphene/Pt(111) 72
Chapter 4 References 74
Chapter 5 Conclusions 76
參考文獻 [1.1] N. Kizhakevariam and E.M. Stuve, Surf. Sci. 286, 246 (1993)
[1.2] B.A. Sexton, Surf. Sci. 102, 271 (1981)
[1.3] Iva Matolínová,, Viktor Johánek, Josef Mysliveček, Kevin C. Prince, Tomáš Skála, Michal Škoda, Nataliya Tsud, Mykhailo Vorokhta and Vladimír Matolín, Surf. Interface Anal. 43, 1325 (2010)
[1.4] A. P. Alivisatos, Science. 271, 933 (1996)
[1.5] R. E. Palmer, New Sci. 2070, 38 (1996)
[1.6] M. Baumer, H. J. Freund, Prog. Surf. Sci. 61, 127 (1999)
[1.7] G. P. Lopinski, V. I. Merkulov, J. S. Lannin, Phys. Rev. Lett. 80, 4241 (1998)
[1.8] C. R. Henry, Sruf. Sci. Rep. 31, 231 (1998)
[1.9] M. Haruta, Catal. Today 36, 153 (1997)
[1.10] M. Valden, X. Lai, D. W. Goodman, Science 281, 1647 (1998)
[1.11] Chen-Sheng Chao, Methanol Decomposition on Pt Nanoparticles supported by Al2O3/NiAl(100): A combined IRAS and TPD study. Master thesis, (2012).
[2.1] Peter Sutter, Jerzy T. Sadowski and Eli Sutter, Phys. Rev. B. 80, 245411 (2009).
[2.2] J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Nano Lett. 8, 2458 (2008).
[2.3] J. Coraux, A. T. N’Diaye, M. Engler, C. Busse, D. Wall, N. Buckanie, F. J. Meyer zu Heringdorf, R. van Gastel, B. Poelsema, and T. Michely, New J. Phys. 11, 039801 (2009).
[2.4] M. Gao, Y. Pan, L. Huang, H. Hu, L. Z. Zhang, H. M. Guo, S. X. Du and H.-J. Gao, Appl. Phys. Lett. 98, 033101 (2011).
[2.5] H. Ueta, M. Saida, C. Nakai, Y. Yamada, M. Sasaki, and S. Yamamoto, Surf. Sci. 560, 183 (2004).
[2.6] E. Loginova, N. C. Bartelt, P. J. Feibelman, and K. F. McCarty, New J. Phys. 11, 063046 (2009).
[2.7 ] Y. Pan, H. G. Zhang, D. X. Shi, J. T. Sun, S. X. Du, F. Liu, and H. J. Gao, Adv. Mater. 21, 2777 (2009).
[2.8] A. T. N’Diaye, J. Coraux, T. N. Plasa, C. Busse, and T. Michely, New J. Phys. 10, 043033 (2008).
[2.9] S. Marchini, S. Günther and J. Wintterlin, Phys. Rev. B. 76, 075429 (2007).
[2.10] M. J. Van Staden and J. P. Roux, Appl. Surf. Sci. 44, 259 (1990).
[2.11] D. W. Goodmann and J. M. White, Surf. Sci. Lett. 90, 201 (1979).
[2.12] L. E. Davis, N. C. MacDonald, P. W. Palmberg, G. E. Riach, and R. E.Weber, Handbook of Auger Electron Spectroscopy, 2nd ed. (Perkin Elmer, Eden Prairie, MN, 1978).
[2.13] 16 J. Tersoff, Phys. Rev. Lett. 57, 440 (1986).
[2.14] F. J. Himpsel, K. Christmann, P. Heimann, D. E. Eastman, and P. J. Feibelman, Surf. Sci. 115, L159 (1982).
[2.15] T. A. Land, T. Michely, R. J. Behm, J. C. Hemminger, and G. Comsa, Surf. Sci. 264, 261 (1992).
[2.16] Zhu Liang, Homa Khosravian, Alexander Uhl, Randall J. Meyer, Michael Trenary, Surf. Sci. 606, 1643-1648 (2012).
[2.17] J. Lahiri, Y. Lin, P. Bozkurt, I.I. Oleynik, M. Batzill, Nat. Nanotechnol. 5, 326 (2010).
[2.18] K.A. Ritter, J.W. Lyding, Nat. Mater. 8, 235 (2009).
[2.19] T. Michely, M. Hohage, M. Bott, G. Comsa, Phys. Rev. Lett. 70, 3943 (1993).
[2.20] S. Liu, Z. Zhang, G. Comsa, H. Metiu, Phys. Rev. Lett. 71, 2967 (1993).
[2.21] G.B. Fisher and J.L. Gland, Surface Sci. 94, 446 (1980).
[2.22] K. Christmann, G. Ertl and T. Pignet, Surface Sci. 54, 365 (1976).
[2.23] R.W. McCabe and L.D. Schmidt, Surface Sci. 65, 189 (1977).
[2.24] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1978).
[2.25] B.A. Sexton, Surface Sci. 88, 299 (1979).
[2.26] J.E. Demuth, H. Ibach and S. Lehwald, Phys. Rev. Letters. 40, 1044 (1978).
[2.27] G.B. Fisher, T.L. Madey, B.J. Waclwaski and J.T. Yates, in: Proc. 7th Intern. Vacuum Congr. and 3rd Intern. Conf. on Solid Surfaces, Vienna, 1977, Vol. II, p. 1071.
[2.28] A.M. Baro and H. Ibach, J. Chem. Phys. 71, 4812 (1979).
[2.29] J.L. Gland, B.A. Sexton and G.B. Fisher, Surface Sci. 95, 587 (1980).
[2.30] G.B. Fisher and B.A. Sexton, Phys. Rev. Letters. 44, 683 (1980).
[2.31] A.M. Baro, H. Ibach and H.D. Bruchmann, Surface Sci. 88, 384 (1979).
[3.1] Peter J. Dobson, An Introduction to Reflection High Energy Electron Diffraction.
[3.2] Elaine M. McCash, Surface Chemistry.
[3.3] John B. Hudson, Surface Science: An Introduction.
[3.4] 行政院國家科學委員會精密儀器發展中心, 真空技術與應用.
[3.5] R. Franchy, Surface Science Reports 38 (2000) 195-294.
[3.6] M.S. Zei, C.S. Lin, W.H. Wen, C.I. Chiang, M.F. Luo, Surf. Sci. 600 (2006) 1942-1951.
[3.7] Elaine M. McCash, Surface Chemistry, Oxford University Press (2001).
[3.8] John B. Hudson, Surface Science: an introduction, J.Wiley & Sons (1998).
[3.9] P.Hollins and J. Pritchard, Prog. Surf, Sci. 19, 275 (1985).
[3.10] F.M. Hoffmann, Surf. Sci. Rep. 3, 107 (1982).
[3.11] A.M. Bradshaw, E. Schweizer, Infrared reflection absorption spectroscopy of adsorbed molecules, in: R.E. Hester(Ed.), Advances in Spectroscopy: Spectroscopy of Surfaces, Wiley, New York (1988).
[3.12] R. G. Greenler, J. Chem. Phys., 44, 310 (1966).
[3.13] Marcus Bäumer, H.-J. Freund, Progress in Surf. Sci. 61, 127 (1999).
[3.14] ABB FT-IR reference manual.
[3.15] 李冠卿, 近代光學, 聯經出版社 (1988).
[4.1] Sam Zhang, Nanostructured Thin Films and Coatings: Mechanical Properties, CRC Press (2010), p358.
[4.2] Mahmood Aliofkhazraei, Nasar Ali, William I. Milne, Cengiz S. Ozkan, Stanislaw Mitura, Juana L. Gervasoni, Graphene Science Handbook: Size-Dependent Properties, CRC Press (2016), p105 ~ p106.
[4.3] C. Heske, R. Treusch, F. J. Himpsel, S. Kakar, L. J. Terminello, H. J. Weyer, and E. L. Shirley, Phys. Rev. B. 59, 4680 (1999).
[4.4] Matthew J. Lundwall, Sean M. McClure, and D. Wayne Goodman, J. Phys. Chem. 114, 7904 (2010)
[4.5] Luca Vattuone, Letizia Savio, Mario Rocca, Surf. Sci. Rep. 63, 101 (2008)
[4.6] A.M. Bradshaw, E. Schweizer, Infrared reflection absorption spectroscopy of adsorbed molecules, in: R.E. Hester(Ed.), Advances in Spectroscopy: Spectroscopy of surfaces, Wiley, New York (1988)
[4.7] H. Steininger, S. Lehwald, and H. Ibach, Surf. Sci. 123, 264 (1982)
[4.8] Chen-Sheng Chao, Methanol Decomposition on Pt Nanoparticles
supported by Al2O3/NiAl(100): A combined IRAS and TPD study. Master thesis, (2012).
指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2016-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明