博碩士論文 102222024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.145.178.240
姓名 林佳緯(Chia-wei Lin)  查詢紙本館藏   畢業系所 物理學系
論文名稱 同調性毫赫茲以下的光學偏頻鎖相系統測 量高分辨率的銫原子 6S-6D 超精細躍遷
(Sub-mHz-coherence optical offset locking for high-resolution cesium 6S-6D hyperfine transitions)
相關論文
★ 銫原子 6S-6D 雙光子超精細耦合常數★ 銫原子穩頻822奈米二級光鐘
★ 銫原子6S1/2-6D3/2超精細躍遷絕對頻率與超精細結構★ 銫原子蘭道g值之量測
★ 偏頻鎖相超短脈衝雷射以實現銫及銣原子高解析直接光梳光譜★ 碘分子R(81)29-0 超精譜線用於539.5-nm 雷射穩頻
★ 銣原子光鐘絕對頻率之量測★ 無頻率調制銣原子光鐘之研究
★ Direct comb laser spectroscopy of Cs 6S-8S, Rb 5S-5D hyperfine transitions—toward building up a novel Ti:sapphire comb laser with merely 6cm Cs-Rb mixed cell
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 藉著不同偏頻鎖相系統的方法,試著將兩台雷射的頻率差固定。成功將一台半導體雷射(僕雷射)與另一台頻率穩定的雷射(主雷射)做偏頻鎖相,產生高穩定的頻率差。本論文將介紹一個創新且簡單的偏頻鎖相系統,包括自製的相位偵測器與使用的 PI迴路。為了增加拍頻的功率,我們做出一台 tracking Oscillator,且為了增加 capture range ,以數位計數器維基礎做出修改版本。使用數位式與類比式相位偵測器的光學偏頻鎖頻系統,並且測量雷射拍頻的 3-dB 線寬。本論文中最好設計的拍頻的3-dB 線寬小於 1 mHz。
主雷射也是半導體雷射且擁有獨立的鎖頻系統,所以主雷射能提供穩定的參考頻率給僕雷射使用。最後,使用兩種不同的方法操作光學偏頻鎖相系統,測量銫原子的6S-6D的超精細躍遷譜線。藉由本論文中偏頻鎖相的技術,改變僕雷射頻率達到掃描銫原子譜線的目的。
摘要(英) We tried to make frequency difference of two lasers be stable by some offset locking. Using different approaches, we successfully offset locked the frequency of one diode laser (slave laser) against the other frequency-stabilized laser (master laser), resulting in a highly stable frequency difference. A novel and simple scheme of electronic offset locking includes phase detector, PI loop filter is reported. For boosting up the beat-note power, we also built up a tracing oscillator with which a freency counter-based device was installed for extending the capture range. We use both digital and analogic phase detector to demonstrate the optical offset locking. We used different approaches to measure 3-dB linewidth of beat-note. The best design can make the 3-dB linewidth of beat-note be smaller than 1 mHz.
The master laser was a diode laser having an independent frequency locking system that could serve as a stable reference frequency of slave laser. To sum up, we can control optical offset locking to monitor cesium 6S1/2-6D2/3 hyperfine transitions by two approaches. The purpose is to scan cesium hyperfine transitions by changing the frequency of slave laser, using the developed offset locking technique in this thesis.
關鍵字(中) ★ 偏頻鎖相
★ 鎖相迴路
★ 銫原子超精細結構躍遷
關鍵字(英) ★ offset locking
★ phase locked loop
★ cesium hyperfine transitions
論文目次 致謝 I
摘要 II
Abstract III
圖表目錄 VI
第一章 歷史背景與動機 1
第二章 原理 6
一、 鎖相迴路 6
二、 數位相位偵測器 12
三、 帶通濾波器鎖頻線路 27
四、 相位雜訊與頻譜密度 36
第三章 實驗裝置 41
一、 光鎖相迴路與雷射腔內式光譜(intra-cavity spectroscopy) 41
二、 雷射特性與光路零件 52
三、 帶通濾波鎖頻迴路 53
四、 使用儀器 55
五、 CPLD與數位+類比相位頻率偵測電路設計 56
六、 Tracking Oscillator 62
第四章 實驗成果 66
一、 線寬的量測 66
二、 相位雜訊 73
三、 其他實驗設置的測量 75
四、 Tracking Oscillator測量 84
五、 銫原子6S1/2到6D3/2的譜線掃描 86
第五章 未來展望 98
附錄 99
使用電阻型電感製做帶通濾波鎖相迴路 99
雷射偏頻鎖頻使用除頻器的結果 100
電子電路零件 102
儀器列表 103
計算內心 103
參照 108
參考文獻 [1] H. d. Bellescize, “La réception synchrone,” L′Onde Électrique, VOL. 11, pp. 230-240, 6 1932.
[2] L. H. Enloe, and J. L. Rodda, “Laser phase-locked loop,” IEEE, VOL., pp. 165-166, 2 1965.
[3] Timothy Day, Eric K. Gustafson, and Robert L. Byer, “Sub-Hertz Relative Frequency Stabilization of Two-Diode Laser-Pumped Nd:YAG Lasers Locked to a Fabry-Perot Interferometer,” IEEE, VOL. 28, pp. 1106-1117, 4 4 1992.
[4] 楊福祥, “釔鎦石雷射偏頻鎖相之研究,” 國立清華大學物理學系, 1998.
[5] Y B Kale, Ayan Ray, Q V Lawande and B N Jagatap, “Coherent spectroscopy of a Λ atomic system and its prospective application to tunable frequency offset locking,” IOPscience, VOL. 84, 9 8 2011.
[6] A. C. Bordonalli, C. Walton, and Alwyn J. Seeds, “High-Performance Phase Locking of Wide Linewidth Semiconductor Lasers by Combined Use of Optical Injection Locking and Optical Phase-Lock Loop,” IEEE, VOL. 17, pp. 328-342, 2 2 1999.
[7] A.Castrillo, E. Fasci, G.Galzerano, and G. Casa , P. Laporta, and L. Gianfrani, “Offset-frequency locking of extended-cavity diode lasers for precision spectroscopy of water at 1.38 μm,” OSA | Optics Express, VOL. 18, pp. 21851-21860, 11 10 2010.
[8] Howard R. Rideout, Joe S. Seregelyi, Stéphane Paquet, and Jianping Yao, Senior Member, IEEE, “Discriminator-Aided Optical Phase-Lock Loop Incorporating a Frequency Down-Conversion Module,” IEEE, VOL. 18, pp. 2344-2346, 15 11 2006.
[9] M. Prevedelli, T. Freegarde, T.W Hansch, “Phase locking of grating-tuned diode lasers,” Applied Physics B, VOL 60, pp. 241-248, 1995.
[10] N. Beverini, M. Prevedelli, F. Sorrentino, B. Nyushkov, A. Ruffini, “An analog + digital phase-frequency detector for phase locking of a diode laser to an optical frequency comb,” Quantum Electronics, vol34, pp. 559-564, 2004.
[11] Stephane Schilt, Renaud Matthey, Daniela Kauffmann-Werner, Christoph Affolderbach, Gaetano Mileti, and Luc Thévenaz, “Laser offset-frequency locking up to 20 GHz using a low-frequency electrical filter technique,” OSA | Applied Optics, VOL 47, pp. 4302-4447, 15 7 2008.
[12] Zhencan F. Fan and Mario Dagenais, Senior Member, “Optical Generation of a mHz-Linewidth Microwave Signal Using Semiconductor Lasers and a Discriminator-Aided Phase-Locked Loop,” IEEE, VOL.45, pp. 1296-1300, 8 8 1997.
[13] D. Ritt, G. Cennini, C. Geckeler, M. Weitz, “Laser frequency offset locking using a side of filter technique,” Applied Physics B, VOL. 79, pp. 363-365, 8 2004.
[14] Marcus Zimmermann, Christoph Gohle, Ronald Holzwarth, Thomas Udem, and Theodor W. Hänsch, “Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference-frequency generation,” OPTICS LETTERS, VOL. 29, pp. 310-312, 1 2 2004.
[15] Jack Stone, Patrick Egan, “An Optical frequency comb tied to GPS for laser frequency/wavelength calibration,” Journal of the National Institute of Standards, VOL. 115, pp. 413-431, 1 11 2010.
[16] G. Puentes, “Laser frequency offset locking scheme for high-field imaging of cold atoms,” Applied Physics B, VOL. 107, pp. 11-16, 4 2012.
[17] A. Kortyna, N. A. Masluk, and T. Bragdon, “Measurement of the 6d DJ2 hyperfine structure of cesium using resonant two-photon sub-Doppler spectroscopy,” Phpsical review A, VOL 74, p. 022503, 3 8 2006.
[18] You-Huan Chen, Tze-Wei Liu, Chien-Ming Wu, Chien-Chung Lee, Chao-Kuei Lee, and Wang-Yau Cheng, "High-resolution Cs133 6S –6 D , 6S –8S two-photon spectroscopy using an intracavity scheme," Optics letters, VOL 36, pp. 76-78, 1 1 2011.
[19] R. L. Barger and J. L. Hall, “Pressure Shift and Broadening of Methane Line at 3.39 μ Studied by Laser-Saturated Molecular Absorption,” Physical Review Letters, VOL. 22, pp. 4-8, 6 1 1969.
[20] Miao Zhu and John L. Hall, “Stabilization of optical phase/frequency of a laser system: application to a commercial dye laser with an external stabilizer,” OSA | Optical Society, VOL. 10, pp. 802-816, 5 5 1993.
[21] E. Arimondo and William D. Phillips, Laser Manipulation of Atoms and Ions, North-Holland, 1993.
[22] Toptica, “DL 100 – Tunable Diode Laser,” [線上]. Available: http://www.toptica.com/products/research_grade_diode_lasers/tunable_diode_lasers/tunable_diode_lasers_370_nm_1770_nm_dl_100.html.
[23] B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Physical Review Letters, VOL. 82, pp. 3799-3802, 10 5 1999.
[24] Tomoaki OHTSUKA, Nobuo NISHIMIYA, Takako FUKUDA and Masao SUZUKI, “Doppler-Free Two-Photon Spectroscopy of 6S1/2 –6D3/2,5/2 Transition in Cesium,” Journal of the Physical Society of Japan, VOL 74, pp. 2487-2491, 9 9 2005.
指導教授 鄭王曜(Wang-yau Cheng) 審核日期 2016-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明