博碩士論文 102222026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.135.185.194
姓名 黃彥文(YAN-WEN HUANG)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(A STM Study of Growth of Rh and Pt Nanoclusters Supported by Graphene on Pt(111))
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們以掃描穿隧式顯微鏡顯微鏡(Scanning Tunneling Microscope, STM)探測Pt及Rh金屬奈米團簇生長在以Pt(111)為基底的石墨烯(graphene)上的形貌,主要研究奈米團簇在室溫下的成長模式以及加熱對團簇造成的影響。從實驗中觀察到Pt及Rh團簇在石墨烯上有三種偏好生長的位置,分別為台階邊上、台階上及領域邊緣。生長在台階邊上及領域邊緣的團簇會有較小的尺寸,但是擁有較高的分布密度。我們還觀察到在某些鍍量下,石墨烯表面上的團簇會有兩種不同的分布密度。從Gao et al.的實驗中可知,石墨烯薄膜可以根據生長方向大小的不同區分為兩類,進而推論出在不同的石墨烯上生長出來的金屬奈米團簇會擁有不同的生長特性。
  在室溫下形成的Pt團簇於低鍍量時(<0.7ML),團簇的密度及尺寸會隨著鍍量的增長而有所增加,但在高鍍量時(>0.7ML),尺寸的增加速度會趨於緩和。將其加熱到450K之後,石墨烯表面上的Pt金屬原子數量並沒有太大的改變,而團簇尺寸會縮小進而形成能量較為穩定的結構,同時團簇密度會增大;加熱到700K後,石墨烯表面上的Pt金屬原子數量縮減至原來的一半,而由於燒結的效應,團簇尺寸會增大,且團簇密度會大幅減少。
  在室溫下生長於石墨烯上的Rh團簇隨著鍍量的增加,團簇密度也會跟著增加,但Rh團簇的尺寸將維持不變直到鍍量到達0.65ML。而在高鍍量時(>0.65ML),團簇尺寸會因為密度達到飽和而開始增長。將Rh團簇加熱之後,團簇尺寸會有所增大且趨於統一,但其密度會減少。加熱Rh團簇會使Rh原子聚集,而使表面上的團簇密度會開始有不均勻的分布現象。
摘要(英) Pt and Rh nanoclusters formed through vapor deposition on the graphene/Pt(111) are studied by scanning tunneling microscopy (STM). We investigate the growth behaviors of Pt and Rh clusters at 300 K and the effect of thermal treatments. We observe that there are three kinds of positions where Pt and Rh clusters formed preferentially on the graphene/Pt(111): step edge, terrace and domain boundary. The size of clusters on the step edge and domain boundary is smaller than that on terrace site, but their cluster density is greater. We observe two kinds of cluster density of Pt and Rh nanoclusters on the graphene surface at several coverages. The graphene films can be classified into two types large and small rotation angle of graphene with respect to Pt(111) substrate. It is reasonable to assume that these two domains could have different properties for the growth of nanoclusters.
The studies of Pt clusters formed at 300 K show that at coverage < 0.7 ML, the cluster density and size of Pt clusters increase with the coverage increasing; at coverage > 0.7 ML, the increase rate of size become slowly. After annealing to 450 K, the coverage is almost the same as the original. However, after annealing to 700 K, only 50 % of Pt remained on the graphene. Because of getting thermal energy during annealing, the cluster sizes become smaller and uniform, and density increases obviously.
The studies of Rh clusters formed at 300 K show that when the coverage increases, the cluster density increases, but the Rh clusters remain the same size until the coverage is increased to about 0.65 ML. The Rh cluster sizes start to increase when the cluster density become saturated (4.76×1012 cm-2) at coverage > 0.65 ML. After annealing, the Rh clusters become bigger and more uniform in size, but the clustery density decreases.
關鍵字(中) ★ 掃描穿隧式顯微鏡
★ 奈米團簇
★ 銠
★ 鉑
★ 石墨烯
關鍵字(英) ★ STM
★ nanocluster
★ Rh
★ Pt
★ graphene
論文目次 Chapter 1 Introduction 01
Chapter 1 References 03
Chapter 2 Literature Survey 04
2.1 Graphene growth on Pt(111) 04
2.2 Pt nanoclusters on Graphene/Pt(111) 12
2.3 Rh nanoclusters on Graphene/Ir(111) 17
Chapter 2 References 20
Chapter 3 Experimental Instrument and Procedures 22
3.1 Vacuum system 22
3.1.1 Introduction to vacuum 22
3.1.2 Introduction to a UHV system 23
3.1.3 Experimental instruments 26
3.2 Scanning tunneling microscope 27
3.2.1 Operation principles of STM 27
3.2.2 Operation of STM 30
3.2.3 RHK-UHV 300 STM 33
3.2.4 Preparing the STM tip 37
3.3 Experimental procedures 38
3.4 Estimation of coverage 39
Chapter 3 References 41
Chapter 4 Results and Discussions 43
4.1 Graphene growth on Pt(111) 43
4.2 Pt nanoclusters supported on graphene/Pt(111) 44
4.2.1 Pt nanoclusters supported on graphene/Pt(111) with different coverage 44
4.2.2 Annealed Pt clusters 52
4.3 Rh nanoclusters supported on graphene/Pt(111) 58
4.3.1 Rh nanoclusters supported on graphene/Pt(111) with different coverage 58
4.3.2 Annealed Rh nanoclusters 66
4.4 Compare between Rh and Pt nanoclusters 68
Chapter 4 References 71
Chapter 5 Conclusions 72
參考文獻 Chapter 1 References

[1.1] A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots”, Science, Vol 271, pp. 933-937, February 1996.
[1.2] M. Bäumer, H.-J. Freund, “Metal deposits on well-ordered oxide films”, Prog. Surf. Sci., Vol 61, pp. 127-198, August 1999.
[1.3] G. P. Lopinski, V. I. Merkulov, J. S. Lannin, “Semimetal to Semiconductor Transition in Carbon Nanoparticles”, Phys. Rev. Lett., Vol 80, pp. 4241-4244, May 1998.
[1.4] C. R. Henry, “Surface studies of supported model catalysts”, Surf. Sci. Rep., Vol 31, pp. 231-233, 235-325, 1998.
[1.5] M. Haruta, “Size- and support-dependency in the catalysis of gold”, Catal. Today, Vol 36, pp. 153-166, April 1997.
[1.6] M. Valden, X. Lai, D. W. Goodman, “Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties”, Science, Vol 281, pp. 1647-1650, September 1998.
[1.7] M. Gao, Y. Pan, L. Huang, H. Hu, L.Z. Zhang, H.M. Guo, S.X. Du, H.J. Gao, Appl. Phys. Lett. 98 (2011) 033101.

Chapter 2 References

[2.1] M. Gao, Y. Pan, L. Huang, H. Hu, L. Z. Zhang, H. M. Guo, S. X. Du and H.-J. Gao, Appl. Phys. Lett. 98, 033101 (2011).
[2.2] Peter Sutter, Jerzy T. Sadowski and Eli Sutter, Phys. Rev. B. 80, 245411 (2009).
[2.3] H. Ueta, M. Saida, C. Nakai, Y. Yamada, M. Sasaki, and S. Yamamoto, Surf. Sci. 560, 183 (2004).
[2.4] E. Loginova, N. C. Bartelt, P. J. Feibelman, and K. F. McCarty, New J. Phys. 11, 063046 (2009).
[2.5] P. Sutter, J. T. Sadowski, and E. Sutter, Phys. Rev. B 80, 245411 (2009).
[2.6] Y. Pan, H. G. Zhang, D. X. Shi, J. T. Sun, S. X. Du, F. Liu, and H. J. Gao, Adv. Mater. 21, 2777 (2009).
[2.7] A. T. N’Diaye, J. Coraux, T. N. Plasa, C. Busse, and T. Michely, New J. Phys. 10, 043033 (2008).
[2.8] T.A. Land, T. Michely, R.J. Behm, J.C. Hemminger, G. Comsa, Surf. Sci. 264 (1992) 261.
[2.9] M. Enachescu, D. Schleef, D.F. Ogletree, M. Salmeron, Phys. Rev. B 60 (1999) 16913.
[2.10] T.A. Land, T. Michely, R.J. Behm, J.C. Hemminger, G. Comsa, J. Chem. Phys. 97 (1992) 6774.
[2.11] Z. Liang et al. / Surface Science 606 (2012) 1643
[2.12] B.I. Yakobson, Appl. Phys. Lett. 72 (1998) 918.
[2.13] Y. Liu, B.I. Yakobson, Nano Lett. 10 (2010) 2178.
[2.14] K. Kim, Z. Lee, W. Regan, C. Kisielowski, M.F. Crommie, A. Zettl, ACS Nano 5 (2011) 2142.
[2.15] P.Y. Huang, C.S. Ruiz-Vargas, A.M. van der Zande, W.S. Whitney, M.P. Levendorf, J.W. Kevek, S. Garg, J.S. Alden, C.J. Hustedt, Y. Zhu, J. Park, P.L. McEuen, D.A. Muller, Nature 469 (2011) 389.
[2.16] T. Michely, M. Hohage, M. Bott, G. Comsa, Phys. Rev. Lett. 70, 3943 (1993).
[2.17] S. Liu, Z. Zhang, G. Comsa, H. Metiu, Phys. Rev. Lett. 71, 2967 (1993).
[2.18] P.J. Feibelman, Phys. Rev. B 80 (2009) 085412.
[2.19] J.G. Chen, M.L. Colaianni, W.H. Weinberg, J.T. Yates Jr., Surf. Sci. 279 (1992) 223.
[2.20] N′Diaye, A. T.; Bleikamp, S.; Feibelman, P. J.; Michely, T. Two-Dimensional Ir Cluster Lattice on a Graphene Moiré on Ir(111). Phys. Rev. Lett. 2006, 97, 215501.
[2.21] Lizzit, S.; Baraldi, A. High-Resolution Fast X-ray Photoelectron Spectroscopy Study of Ethylene Interaction with Ir(111): From Chemisorption to Dissociation and Graphene Formation. Catal. Today 2010, 154, 68–74.
[2.22] Alberto Cavallin, Monica Pozzo, Cristina Africh, Alessandro Baraldi, Erik Vesselli, Carlo Dri, Giovanni Comelli, Rosanna Larciprete, Paolo Lacovig, Silvano Lizzit, and Dario Alfè, ACS Nano 2012, 6, 3034-3043.
[2.23] Henry, C. R. Morphology of Supported Nanoparticles. Prog. Surf. Sci. 2005, 80, 92–116.
[2.24] Wulff, G. Z. Kristallogr. 1901, 449–530.

Chapter 3 References

[3.1] Hans Lüth, Surface and Interfaces of Solids., Springer-Verlag, New York, USA, 1993.
[3.2] A. Chambers, et al., Basic Vacuum Technology., Institute of Physics Pub., Philadelphia, USA, 1989.
[3.3] Hans Lüth, Surface and Interfaces of Solid Materials., Springer-Verlag, New York, USA, 1995.
[3.4] 蘇青森等編著,真空技術與應用,行政院國家科學委員會精密儀器發展中心,台灣新竹市,2001。
[3.5] G. Binnig, H. Rohrer, E. Weibel, “Tunneling through a controllable vacuum gap”, Appl. Phys. Lett., Vol 40, pp. 178-180, 1982.
[3.6] G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, “7 × 7 Reconstruction on Si(111) Resolved in Real Space”, Phys. Rev. Lett., Vol 50, pp. 120-123, January 1983.
[3.7] R. Eisberg, R. Resnick, QUANTUM PHYSICS OF ATOMS, MOLECULES, SOLIDS, NUCLEI, AND PARTICLES., Wiley, New Work, USA, 1985.
[3.8] R.J. Behm, et al., Scanning Tunneling Microscopy and Related Methods., Springer-Verlag, New York, USA, August 1990.
[3.9] R. H. Fowler, L. Nordheim, “Electron Emission in Intense Electric Fields”, Proc. Roy. Soc. A, Vol 119, pp. 173-181, May 1928.
[3.10] D-H. Wooa, E-M. Choia, Y-H. Yoona, K-J. Kima, I.C. Jeonb, H. Kang, “Current-distance-voltage characteristics of electron tunneling through an electrochemical STM junction”, Surf. Sci., Vol 601, pp. 1554-1559, March 2007.
[3.11] G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, “Electron Emission in Intense Electric Fields”, Phys. Rev. Lett., Vol 49, pp. 51-61, July 1982.
[3.12] User’s guide of RHK-UHV 300.
[3.13] R.P. Blum, H. Niehus, “Initial growth of Al2O3 on NiAl(001)”, Appl. Phys. A, Vol 66, pp. S529-S533, 1998.
[3.14] R. Blum, D. Ahlbehrendt, H. Niehus, “Growth of Al2O3 stripes in NiA(001)”, Surf. Sci., Vol 396, pp. 176, January 1998.
[3.15] J. Mendez, H. Niehus, “Growth of chromium on the structured surface of Al2O3/NiAl(100)”, Appl. Surf. Sci., Vol 142, pp. 152-158, April 1999.
[3.16] P. Gassmann, R. Franchy, H Ibach, “Investigations on phase transitions within thin Al2O3 layers on NiAl(001) – HREELS on aluminum oxide films”, Surf. Sci., Vol 319, pp. 95-105, November 1994.
[3.17] N. Fremy, V. Maurice, P. Marcus, “ Initial Stages of Growth of Alumina on NiAl(001) at 1025 K”, J. Am. Ceram. Soc., Vol 86, pp. 669-675, April 2003.
[3.18] M.F. Luo, C.I. Chiang, H.W. Shiu, S.D. Sartale, C.C. Kuo, “Patterning Co nanoclusters on thin-film Al2O3/NiAl(100)”, Nanotechnology, Vol 17, pp. 360-366, December 2005.

Chapter 4 References

[4.1] Z. Liang et al. / Surface Science 606 (2012) 1643
[4.2] M. Gao, Y. Pan, L. Huang, H. Hu, L.Z. Zhang, H.M. Guo, S.X. Du, H.J. Gao, Appl. Phys. Lett. 98 (2011) 033101
[4.3] 蔡佩仰, Methanol Decomposition on Pt nanoclusters supported by Graphene on Pt(111): A combined RHEED, IRAS and TPD study
指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2016-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明