博碩士論文 102222033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:54.224.210.130
姓名 李璿(Hsuan Lee)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Methanol Decomposition on Au-Rh Bimetallic Nanoclusters supported by Al2O3/NiAl(100): A combined IRAS and TPD study)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們藉由熱脫附質譜(TPD)和紅外光反射吸收能譜(IRAS)表面探測技術利用一氧化碳分子來探測在室溫下蒸鍍於θ相氧化鋁薄膜上的金-銠合金奈米粒子的表面結構和組成。將金原子鍍在銠奈米團簇上,銠在合金奈米粒子的表面位置數會隨著金的鍍量線性遞減。當銠原子鍍在金奈米團簇上,我們會發現銠原子跟金原子會在表面交換形成銠核-金殼的結構,隨著銠原子鍍量的增加我們發現吸附在金原子上的一氧化碳對紅外光的吸收會明顯增強。不論蒸鍍金或銠的先後順序如何,我們都觀察到一氧化碳分子的脫附不會改變金-銠合金奈米粒子的表面組成,且當金原子吸附一氧化碳分子時會降低吸附在銠原子上的一氧化碳分子對紅外光的吸收。在合金奈米粒子的熱穩定性實驗中我們發現不論蒸鍍金或銠的先後順序如何,450 K時位於合金表面的金原子會將銠原子覆蓋的更好,700 K時合金表面的金與銠相對於300 K都有明顯的減少。
甲醇在金-銠合金奈米粒子上的分解途徑為脫氫反應,主要在銠的位置上進行。大尺寸的銠金屬團簇(1.00 ML)對於甲醇分解的產率會因鍍上少量的金(0.25 ML)而明顯降低,是因為金原子傾向於佔據銠團簇較具有活性的低配位數位置,但並不會對甲醇脫氫產生一氧化碳的活化能造成明顯改變。但是小尺寸(0.25 ML)的銠團簇對於甲醇分解的產率不會隨著鍍上金原子而有變化,主因是金原子佔據的都是銠團簇較具有活性的低配位數位置。當銠鍍在黃金奈米團簇上時,對甲醇分解的產率會隨著銠的鍍量增加而降低,且產率隨著銠鍍量的演化關係相似於甲醇分解的產率對於純銠奈米團簇鍍量的演化關係,主要原因是由於銠鍍在金奈米粒子上的配體效應並不明顯,故產率隨著銠鍍量的演化關係會與純銠奈米粒子的情形相似。
摘要(英) We probe the surface structure and composition of Au-Rh bimetallic nanoclusters on thin-film Al2O3/NiAl(100) at 300K with molecular CO, temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRAS). For the deposition of Au onto Rh nanoclusters, the numbers of Rh sites decrease linearly with Au deposition. For the metal deposition in the reverse order, Au segregates at the surface and then forms Rh core – Au shell structure. The infrared absorption for CO on Au sites was significantly enhanced with Au deposition. We observed that no CO induces structural change for Au-Rh bimetallic nanoclusters during the CO desorption whereas CO adsorbed on Au sites suppresses the IR absorption of CO on Rh sites, despite the order of the metal deposition. For the investigation of thermal stability, we discovered that in the bimetallic clusters, the Au atoms preferentially covered Rh core at 450 K but both Au and Rh attenuated significantly at 700 K.
The decomposition of methanol proceeded through dehydrogenation, primarily on Rh sites of Au-Rh bimetallic nanoclusters. The reactivity of methanol decomposition dramatically decreases for the bimetallic clusters formed by small coverages of Au ( 0.5 ML) deposited onto Rh clusters of large size (1.0 ML) because the Au atoms prefer to occupy the low-coordinated sites of Rh clusters. Nevertheless, the activation energy of methanol decomposition on the bimetallic clusters changes insignificantly. The reactivity of methanol decomposition to CO on small Rh clusters (0.25 ML) does not be change with Au deposition because all the Au atoms occupy the low coordinated Rh sites. The reactivity of methanol decomposition on the bimetallic clusters formed by Rh deposited onto Au clusters gradually attenuates with Rh deposition. The revolution of the reactivity with following Rh deposition is similar to that with Rh deposited on pure Rh clusters.
關鍵字(中) ★ 甲醇分解
★ 金銠合金
★ 熱脫附
★ 紅外光吸收能譜
關鍵字(英) ★ Methanol decomposition
★ Au-Rh bimetallic nanoclusters
★ Au-Rh alloy
★ TPD
★ IRAS
論文目次 Chapter 1 Introduction 1
Chapter 2 Literature Survey 5
2.1 The structure of Au-Rh bimetallic nanoclusters on TiO2(110) 5
2.1.1 Alloying of Au with Rh in nanoclusters supported on TiO2(110) 6
2.1.2 Temperature-dependent structuring of Au-Rh bimetallic nanoclusters on TiO2(110) 11
2.2 The structure of Au-Rh bimetallic nanoclusters on a thin film of Al2O3/NiAl(100) 16
2.2.1 Alloying of Au with Rh in nanoclusters supported on a thin film of Al2O3/NiAl(100) at 300 K 17
2.2.2 Temperature-dependent structuring of Au-Rh bimetallic nanoclusters on a thin film of Al2O3/NiAl(100) 21
2.3 Decomposition of methanol on pure Au and Rh nanoclusters supported on a thin film of Al2O3/NiAl(100) 25
2.3.1 Decomposition of methanol on Au nanoclusters supported on a thin film of Al2O3/NiAl(100) 25
2.3.2 Decomposition of methanol on Rh nanoclusters supported on a thin film of Al2O3/NiAl(100) 30
Chapter 2 References 36
Chapter 3 Experimental Methods and Apparatus 38
3.1 Experimental methods 38
3.1.1 Cleaning NiAl(100) 38
3.1.2 θ-Al2O3 ultrathin film growth 40
3.1.3 Vapor deposition of Au and Rh 41
3.1.4 Methanol adsorption and reaction 41
3.2 Temperature programmed desorption (TPD) 42
3.3 Infrared reflection adsorption spectroscopy 47
3.3.1 The principle of IRAS 47
3.3.2 Fourier Transform Interferometers 52
Chapter 3 References 55
Chapter 4 Results and Discussion 56
4.1 The surface structure of Au-Rh bimetallic nanoclusters on a thin film of Al2O3/NiAl(100) probed with CO 56
4.1.1 Au-Rh bimetallic nanoclusters formed by Au deposited on Rh clusters on a thin film of Al2O3/NiAl(100) 56
4.1.2 Au-Rh bimetallic nanoclusters formed by Rh deposited on Au clusters on a thin film of Al2O3/NiAl(100) 67
4.2 The decomposition of methanol on Au-Rh bimetallic nanoclusters supported on Al2O3/NiAl(100) 77
4.2.1 The thermal desorption spectra of methanol-d4 on Au-Rh bimetallic clusters on Al2O3/NiAl(100) 78
4.2.2 The infrared absorption spectra of methanol-d4 on Au-Rh bimetallic clusters on Al2O3/NiAl(100) 88
Chapter 4 Reference 92
Chapter 5 Conclusion 94
參考文獻 Chapter 1 References
[1] Hu, G.-R., et al., Low-temperature decomposition of methanol on Au nanoclusters supported on a thin film of Al2O3/NiAl(100). Physical Chemistry Chemical Physics, 2011. 13(8): p. 3281-3290.
[2] Hung, T.-C., et al., Dependence on Size of Supported Rh Nanoclusters in the Decomposition of Methanol. ACS Catalysis, 2015. 5(7): p. 4276-4287.
[3] 廖振和, A STM study of Rh and Rh-Au Bimetallic Nanoclusters on the θ-Al2O3/NiAl(100). 中央大學碩士論文,桃園縣,民國102年。
[4] 徐柏瑋, RHEED Studies on Structures of Rh and Rh-Au Bimetallic Nanoclusters on Thin Film Al2O3/NiAl. 中央大學碩士論文,桃園縣,民國102年。

Chapter 2 References
[1] Óvári, L., et al., Surface Structure and Composition of Au−Rh Bimetallic Nanoclusters on TiO2(110): A LEIS and STM Study. The Journal of Physical Chemistry C, 2008. 112(46): p. 18011-18016.
[2] Ovari, L., et al., Formation of Rh-Au core-shell nanoparticles on TiO2(110) surface studied by STM and LEIS. Langmuir, 2010. 26(3): p. 2167-75.
[3] 廖振和, A STM study of Rh and Rh-Au Bimetallic Nanoclusters on the θ-Al2O3/NiAl(100). 中央大學碩士論文,桃園縣,民國102年。
[4] 徐柏瑋, RHEED Studies on Structures of Rh and Rh-Au Bimetallic Nanoclusters on Thin Film Al2O3/NiAl. 中央大學碩士論文,桃園縣,民國102年。
[5] Hu, G.-R., et al., Low-temperature decomposition of methanol on Au nanoclusters supported on a thin film of Al2O3/NiAl(100). Physical Chemistry Chemical Physics, 2011. 13(8): p. 3281-3290.
[6] Hung, T.-C., et al., Dependence on Size of Supported Rh Nanoclusters in the Decomposition of Methanol. ACS Catalysis, 2015. 5(7): p. 4276-4287.
[7] Mezey, L.Z. and J. Giber, The Surface Free Energies of Solid Chemical Elements: Calculation from Internal Free Enthalpies of Atomization. Japanese Journal of Applied Physics, 1982. 21(11R): p. 1569.
[8] Kiss, A.M., M. Švec, and A. Berkó, The effect of preadsorbed K on the size distribution of Au nanoparticles on TiO2(1 1 0) surface. Surface Science, 2006. 600(16): p. 3352-3360.
[9] Fu, Q. and T. Wagner, Interaction of nanostructured metal overlayers with oxide surfaces. Surface Science Reports, 2007. 62(11): p. 431-498.
[10] Sexton, B.A., Methanol decomposition on platinum (111). Surface Science, 1981. 102(1): p. 271-281.
[11] Wang, J. and R.I. Masel, Carbon-oxygen bond scission during methanol decomposition on (1.times.1)platinum(110). Journal of the American Chemical Society, 1991. 113(15): p. 5850-5856.
[12] Kizhakevariam, N. and E.M. Stuve, Promotion and poisoning of the reaction of methanol on clean and modified platinum (100). Surface Science, 1993. 286(3): p. 246-260.
[13] Chao, C.-S., et al., Two-Channel Decomposition of Methanol on Pt Nanoclusters Supported on a Thin Film of Al2O3/NiAl(100). The Journal of Physical Chemistry C, 2013. 117(11): p. 5667-5677.
[14] Parmeter, J.E., J. Xudong, and D.W. Goodman, The adsorption and decomposition of methanol on the Rh(100) surface. Surface Science, 1990. 240(1): p. 85-100.
[15] Jansen, M.M.M., et al., Interactions between co-adsorbed CO and H on a Rh(100) single crystal surface. Physical Chemistry Chemical Physics, 2009. 11(43): p. 10009-10016.

Chapter 3 References
[1] Elaine M. McCash. Surface Chemistry. Oxford University Press, New York, 2001.
[2] P. Gassmann, R. Franchy and H. Ibach, Investigations on phase transitions within thin Al2O3 layers on NiAl(001) – HREELS on aluminum oxide films. Surface Science, 1994. 319: p. 95-109.
[3] Hans L th. Surfaces and Interfaces of Solid (2nd). Springer-Verlag, 1993.
[4] John B. Hudson. Surface Science: an introduction. J. Wiley & Sons, 1998.
[5] Harald Ibach. Physics of Surfaces and Interfaces. Springer-Verlag, 2006.
[6] Skoog D.A. et al. Principles of Instrumental Analysis (4th). Saunders College, 1992.
[7] P. Hollins and J. Pritchard. Infrared studies of chemisorbed layers on single crystals. Surface Science, 1985, 19: p. 275-350.
[8] F. M. Hoffmann. Infrared reflection-absorption spectroscopy of adsorbed molecules. Surface Science, 1983, 3: p. 107-192.
[9] R. J. H. Clark and R. E. Hester. Advances in Spectroscopy: Spectroscopy of surfaces. Wiley-Blackwell, 1988.
[10] R. G. Greenler. Infrared Study of adsorbed molecules on metal surfaces by reflection techniques. The Journal of Chemical Physics, 1966. 44: p. 310.
[11] J. Pritchard and M. L. Sims. Reflection spectra of adsorbed CO on Copper. Transactions of the Faraday Society, 1970. 66: p. 427.
[12] Marcus , Hans-Joachim Freund. Metal deposits on well-ordered oxide films. Surface Science, 1999. 61: p. 127-198.
[13] 李冠卿, 近代光學, 聯經出版社, 1988.
[14] ABB FT-IR reference manual

Chapter 4 Reference
[1] Hu, G.-R., et al., Low-temperature decomposition of methanol on Au nanoclusters supported on a thin film of Al2O3/NiAl(100). Physical Chemistry Chemical Physics, 2011. 13(8): p. 3281-3290.
[2] Hung, T.-C., et al., Dependence on size of supported Rh nanoclusters for CO adsorption. RSC Advances, 2016. 6(5): p. 3830-3839.
[3] Hung, T.-C., et al., Dependence on Size of Supported Rh Nanoclusters in the Decomposition of Methanol. ACS Catalysis, 2015. 5(7): p. 4276-4287.
[4] Tenney, S.A., et al., Adsorbate-Induced Changes in the Surface Composition of Bimetallic Clusters: Pt−Au on TiO2(110). The Journal of Physical Chemistry C, 2010. 114(49): p. 21652-21663.
[5] 廖振和, A STM study of Rh and Rh-Au Bimetallic Nanoclusters on the θ-Al2O3/NiAl(100). 中央大學碩士論文,桃園縣,民國102年。
[6] Ovari, L., et al., Formation of Rh-Au core-shell nanoparticles on TiO2(110) surface studied by STM and LEIS. Langmuir, 2010. 26(3): p. 2167-75.
[7] Li, Y.D., et al., Surface structures of Au–Pt bimetallic nanoclusters on thin film Al2O3/NiAl(100) probed with CO. Surface Science, 2013. 618: p. 132-139.
[8] Mezey, L.Z. and J. Giber, The Surface Free Energies of Solid Chemical Elements: Calculation from Internal Free Enthalpies of Atomization. Japanese Journal of Applied Physics, 1982. 21(11R): p. 1569.
[9] Óvári, L., et al., Surface Structure and Composition of Au−Rh Bimetallic Nanoclusters on TiO2(110): A LEIS and STM Study. The Journal of Physical Chemistry C, 2008. 112(46): p. 18011-18016.
[10] Li, Y.D., et al., The decomposition of methanol on Au-Pt bimetallic clusters supported by a thin film of Al2O3/NiAl(100). RSC Advances, 2014. 4(60): p. 31602-31613.
[11] 徐柏瑋, RHEED Studies on Structures of Rh and Rh-Au Bimetallic Nanoclusters on Thin Film Al2O3/NiAl. 中央大學碩士論文,桃園縣,民國102年。
指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2016-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明