博碩士論文 102222034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.221.41.214
姓名 周川昇(CHUAN-SHENG CHEW)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Wigner-Weyl′s transform and its contraction)
相關論文
★ 違反R-parity之超對稱標準模型下, 夸克-純量場一階費曼圖對中子電耦極矩之貢獻★ 無R超對稱標準模型中輕子的輻射衰變
★ 超對稱無R宇稱下的電子電偶極矩★ 龐加萊─史奈德相對論架構下的古典與量子力學
★ Lie Algebra Contraction and Relativity Symmetries★ 伽利略座標下的電磁學與龐加萊-史奈德相對論下的電磁學
★ Coherent state and co-adjoint orbits on irreducible representations of SU(4)★ 無R宇稱超對稱裡的輕子味違反希格斯衰變
★ 複數勞倫茲對稱★ Effective Theories for Supersymmetric Nambu-Jona-Lasinio Models established through Functional Integration
★ Kähler Product and Symmetry Data in Quantum Mechanics
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 倘若我們選取 相干態(coherent state)為量子力學 希爾博特(Hilbert space) 向量空間的基地, 則我們發現其對應波函數(wave function)有與 韋恩-威爾變換(WignerWeyl’s transform) 相似的結構. 我們可以將 量力可量測(Obserable)在波函數的表示(representation)與 韋恩-威爾 上的表示視為僅為參數差1/2.另外,不論是量力的波函數表示,還是 韋恩-威爾 變換都有共容的古典極限.
摘要(英) We started with hbar = 1 in each different representation space said matrix representation on Hilbert space, realization as square integrable function and Wigner distribution. We introduced contraction parameter hbar by rescaled generator Q hat and P hat and consider their limitation i.e. hbar → 0 and showed comparable classical limit for each representation.

If coherent state has been chosen as base for our quantum Hilbert space, we found that correspond wave function (realization) have some star structure similar to Wigner-Weyl’s method and identify quantum observable algebra on both representation are equivalent up to a 1/2 factor.
關鍵字(中) ★ 周川昇 關鍵字(英)
論文目次 Contents

1 Introduction (1)

2 Quantum mechanic in Hilbert space (3)
2.1 Matrix representation (4)
2.2 Quantum dynamics (5)
2.3 Rrescaling and contraction consideration (5)
2.4 Appendix A (8)
2.4.1 Derivation for coherent state overlap (8)
2.4.2 Rearranged arbitrary operator polynomial into normal ordering (9)
2.4.3 Commutation relation for arbitrary ordering operator polynomial (10)
2.4.4 Limitation of matrix representation for normal ordering operator (13)

3 Wigner-Weyl’s transform (16)
3.1 Wigner-Weyl’s transform (17)
3.2 star product and Moyal’s bracket (18)
3.3 Average in distribution space (19)
3.4 Contraction in distribution space (20)
3.5 Appendix B (22)
3.5.1 Derivation explicit form for Wigner-Weyl’s transform (22)
3.5.2 Wigner-Weyl’s transform for rho_ab (23)
3.5.3 star cancelling (24)

4 Quantum mechanic realized in square integrable function (25)
4.1 Realization of quantum operator (25)
4.2 star product ? Moyal ’s bracket ? (26)
4.3 Transition amplitude (27)
4.4 Contraction in wave function space (28)
4.5 Appendix C (29)
4.5.1 Derive realization of canonical operator µ hat (29)
4.5.2 Homomorphism of defined map R(µ) (30)
4.5.3 Hermitian property for realization of canonical operator (30)
4.5.4 Weyl’s group action on function space (31)

5 Wigner-Weyl’s method as quantum realization on coherent state (33)
5.1 Weyl ordering polynomial as a fourier integration (34)
5.2 Bopp’s shifting and quantum observable (36)
5.3 star - twisted ⊗ : product correspond of fourier transform for noncommutative variables (36)
5.4 Transition amplitude (38)
5.5 Contraction limit (39)
5.6 Appendix D (41)
5.6.1 proof of the inverse fourier transformation F (41)
5.6.2 Derivation specific charateristic function g(µ)(41) 5.6.3 proof for tilde(F)[ (hat(F)^(−1)rho_ab(µ) ] (43)

Conclusion (44)

Bibliography (45)
參考文獻
[1] Herbert Goldstein “Classical Mechanics” third edition.

[2] J.J. Sakurai “Modern Quantum Mechaincs” revised eidition.

[3] John R. Klauder “Continuous representations and Path integrals, Revisited”,Volume 34 of the series NATO Advanced Study Institutes Series pp 5-38.

[4] John R. Klauder “A Modern Approach to Functional Integration”.

[5] A. M. Perelomov “Generalized coherent states and some of their applications”,1977 Sov. Phys. Usp. 20 703.

[6] William B. Case “Wigner functions and Weyl transforms for pedestrians”, Am.J. Phys. 76(10), October 2008.

[7] M. Hillery, R.F. O’Connell, M.O. Scully, E.P. Wigner “Distribution functions in physics: Fundamentals”,Physics Reports, volume 106, issue 3, April 1984, pages
121-167.

[8] J. E. Moyal “Quantum mechanics as a statistical theory”, Mathematical Proceedings of the Cambridge Philosophical Society, volume 45, issue 01, January
1949, pp 99 - 124.

[9] G. S. Agarwal and E. Wolf “Calculus for Functions of Noncommuting Operators and General Phase-Space Methods in Quantum Mechanics. I. Mapping Theorems and Ordering of Functions of Noncommuting Operators”, Phys. Rev. D 2, 2161 (1970).45

[10] G. S. Agarwal and E. Wolf “Calculus for Functions of Noncommuting Operators and General Phase-Space Methods in Quantum Mechanics. II. Quantum Mechanics in Phase Space Phys. Rev. D 2, 2187 (1970).

[11] D. A. Dubin, Mark A. Hennings, T. B. Smith Mathematical Aspects of Weyl Quantization and Phase”, World Scientific, 2000.
指導教授 江祖永(Otto C.W. Kong) 審核日期 2017-5-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明