博碩士論文 102223005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.94.202.6
姓名 蔡承勳(Chung-Hsun Tsai)  查詢紙本館藏   畢業系所 化學學系
論文名稱 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用
★ 中孔洞碳材於高效能鋰離子電池之應用★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用
★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用
★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用★ 以金屬氧化物ZnO及MgO修飾有序中孔洞碳材CMK-8於高效能鋰離子電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文分作兩部分:第一部分利用三嵌段共聚高分子Pluronic F127作為模板,將具有羧酸官能基的有機矽源 CES (Carboxyehtylsilanetriol Sodium Salt) 和 TEOS (Tetraethyl Orthosilicate) 作為共同矽源,並加入TMB (1,3,5-Trimethylbenzene) 在低量酸性環境且低溫 (15 o C) 下直接共聚合成法進行合成,得到大型孔洞且孔穴狀 (Cage) 的孔洞材料LP-FTC系列,其孔洞規則排列為面心立方對稱結構 (Face-Centered Cubic Structure, Fm3m),並修飾官能基達到30 % 仍具有擴大孔徑的效果,將此材料作為固定木瓜蛋白酶的載體,其吸附量最高可達895 mg/g,經活性實驗測試吸附進入孔洞內的蛋白質仍具有催化活性並且透過等溫模型的分析,得知此系列材料吸附木瓜蛋白酶之過程屬於單層吸附的Langmuir模式,動力學屬於Pseudo-second order之吸附過程,此外亦由分子內擴散模型之速率常數結果,驗證第二步驟之分子內擴散階段為吸附蛋白質之速率決定步驟。
第二部分以F127及P123作為共同界面活性劑,以不同比例之兩種界面活性劑達到調控界面活性劑疏水端及親水端鏈段長之功效,並以TEOS及CES作為共同矽源,在酸性條件下合成孔洞結構對稱性為Im3m且修飾上不同羧酸比例之SBA-16型中孔洞材料,稱作S16C-x系列,並用此材料在鹼性環境下吸附亞甲基藍染料,利用COO-與正電型染料間的靜電吸引力,使其吸附量可達到561 mg/g;而透過酚藏花紅與酸性藍25號之吸附測試得知,鹼性環境下對於正電型染料均有良好的吸附效果,而負電型染料則反之,此外在重複利用性上亦有很好的表現。
摘要(英) The well-ordered cubic large-pore mesoporous silicas LP-FDU-12 (Fm3m) and the cubic mesoporous silicas SBA-16 (Im3m) were both synthesized successfully via co-condensation of tetraethyl orthosilicate (TEOS) and carboxyethylsilanetriol sodium salt (CES), also functionalized with different ratio of catboxylic groups under acidic conditions, and using triblock copolymer Pluronic F127 and Pluronic P123 as template. The former were called LP-FTC-x series, and the latter were called S16C-x series.
The LP-FTC-x were used as adsorbents for immobilization of papain and lysozyme and the S16C-x were used as adsorbents for removing of the dyes. These processes were systematically studied by varing time, initial concentration and pH. The LP-FTC-30 showed an excellent adsorption capacity for 895 mg papain per gram adsorbent, and the S16C-30 showed an excellent adsorption capacity for 561 mg methylene blue per gram adsorbent.
The isotherm models, kinetic models and intraparticle diffusion models properties were used to analyze the immobilization mechanism of LP-FTC-x and the adsorption mechanism of S16C-x. The data were both fitted to the Langmuir isotherm model and Pseudo-Second-Order kinetics.
關鍵字(中) ★ 中孔洞矽材
★ 大孔洞
★ 酵素固定
★ 染料吸附
關鍵字(英) ★ Mesoporous silica materials
★ Large-pore
★ Enzyme immobilization
★ Dye adsorption
論文目次 中文摘要 i
Abstract ii
謝誌 iii
目錄 iv
圖目錄 x
表目錄 xv
第一章 序論 1
1-1中孔洞二氧化矽材料 1
1-1-1中孔洞材料之沿革 1
1-1-2中孔洞的定義 3
1-2界面活性劑性質簡介 5
1-2-1界面活性劑的種類 5
1-2-2共聚高分子 7
1-2-3微胞的形成與結構 9
1-2-4界面活性劑與矽氧化物的交互作用 12
1-3官能基化之中孔洞材料 16
1-3-1表面修飾官能基之中孔洞材料 16
1-3-2表面修飾羧酸官能基之中孔洞材料 17
1-4文獻回顧 20
1-4-1中孔洞材料合成與介紹 20
1-4-2中孔洞材料吸附蛋白質之發展及應用 21
1-4-3中孔洞材料吸附染料之發展及應用 30
1-4-4中孔洞材料吸附金屬之發展及應用 33
1-5研究動機與目的 39
第二章 實驗部分 40
2-1藥品 40
2-2 實驗步驟 42
2-2-1合成具羧酸官能基的大孔洞FDU-12 (LP-FTC-x) 42
2-2-2以硫酸溶液裂解孔洞中的模板 42
2-2-3蛋白質檢量線之製作 43
2-2-4材料LP-FTC在不同反應時間下之蛋白質吸附實驗 45
2-2-5材料LP-FTC在不同pH值下之蛋白質吸附實驗 45
2-2-6材料LP-FTC在不同初始濃度之蛋白質吸附實驗 46
2-2-7蛋白質活性測試實驗 46
2-2-8蛋白質之釋放實驗 47
2-2-9合成具羧酸官能基的SBA-16 (S16C-x) 47
2-2-10以硫酸溶液裂解孔洞中的模板 48
2-2-11染料檢量線之製作 48
2-2-12材料S16C在不同反應時間下之亞甲基藍吸附實驗 49
2-2-13材料S16C在不同初始濃度之亞甲基藍吸附實驗 49
2-2-14材料S16C在不同pH值下之亞甲基藍吸附實驗 49
2-2-15材料S16C之重複利用性實驗 50
2-2-16材料S16C之不同染料吸附實驗 50
2-3實驗設備 51
2-3-1實驗合成設備 51
2-3-2實驗鑑定儀器 51
2-4鑑定儀器之原理 53
2-4-1同步加速器光源 53
2-4-2 X-射線粉末繞射 54
2-4-3氮氣吸脫附等溫曲線、表面積與孔洞特性鑑定 55
2-4-4傅立葉紅外線吸收光譜 60
2-4-5紫外光-可見光光譜 63
2-4-6固態核磁共振 64
2-4-6.1去偶合作用 69
2-4-6.2魔角旋轉 69
2-4-6.3交叉極化 71
2-4-7低真空掃描式電子顯微鏡 72
2-4-8穿透式電子顯微鏡 73
2-4-9熱重分析儀 75
2-4-10動態光散射粒徑分析儀及界面電位分析儀 76
2-4-11感應偶和電漿放射光譜儀 77
第三章 結果與討論 79
3-1 LP-FTC-x系列 79
3-1-1基本性質鑑定 79
3-1-1.1 XRD繞射圖譜 79
3-1-1.2 13C CP/MAS NMR 81
3-1-1.3 29Si MAS NMR 83
3-1-1.4等溫氮氣吸脫附 85
3-1-1.5 FT-IR 紅外線光譜 88
3-1-1.6熱重分析 90
3-1-1.7 SEM影像 91
3-1-1.8 TEM影像 94
3-1-1.9表面電位 95
3-1-2 LP-FTC-x之蛋白質吸附實驗 96
3-1-2.1維度較小之蛋白質對吸附的影響 96
3-1-2.2不同反應時間吸附蛋白質之效果 98
3-1-2.3蛋白質初始濃度對中孔洞材料吸附之影響 99
3-1-2.4不同pH值下吸附蛋白質之效果 100
3-1-2.5不同孔徑大小之材料對蛋白質吸附的影響 102
3-1-2.6蛋白質之活性測試實驗 103
3-1-2.7蛋白質之釋放實驗 105
3-1-3中孔洞材料吸附蛋白質後之性質鑑定 106
3-1-3.1 XRD繞射圖譜 106
3-1-3.2等溫氮氣吸脫附 108
3-1-3.3 FT-IR紅外線光譜 110
3-1-3.4等溫吸附模式 112
3-1-3.5動力學吸附探討 118
3-1-3.6分子內擴散模型之探討 121
3-2 S16C-x系列 124
3-2-1基本性質鑑定 124
3-2-1.1 XRD繞射圖譜 124
3-2-1.2 13C CP/MAS NMR 125
3-2-1.3 29Si MAS NMR 127
3-2-1.4等溫氮氣吸脫附 129
3-2-1.5 FT-IR紅外線光譜 132
3-2-1.6熱重分析 134
3-2-1.7 SEM影像 135
3-2-1.8 TEM影像 136
3-2-1.9表面電位 137
3-2-2 S16C-x之染料吸附實驗 138
3-2-2.1不同反應時間吸附染料之效果 138
3-2-2.2染料初始濃度對中孔洞材料吸附之影響 139
3-2-2.3不同pH值下吸附染料之效果 140
3-2-2.4重複利用性實驗 142
3-2-2.5不同染料之吸附 143
3-2-3中孔洞材料吸附染料之性質鑑定 147
3-2-3.1等溫吸附模式 147
3-2-3.2動力學吸附探討 151
3-2-3.3分子內擴散模型 152
第四章 結論 154
第五章 參考文獻 155
附錄I 170
I-1 Ni-S16C-x系列 170
I-2實驗步驟 170
I-2-1利用S16C-x吸附鎳金屬實驗 170
I-2-2中孔洞材料吸附金屬顆粒還原4-NP之實驗 170
I-3基本性質鑑定 171
I-3-1 WXRD繞射圖譜 171
I-3-2 ICP 173
I-3-3等溫氮氣吸脫附 174
I-3-4 TEM影像 175
I-4中孔洞材料吸附金屬顆粒還原力之動力學探討 176
參考文獻 (1) J.-N. McBain, The Sorption of Gases and Vapors by Solids, George Rutledge and Sons Ltd., London, 1932
(2) D.-W. Breck, Zeolite molecular sieves: structure, chemistry and use, Willey, 1973, 1-771.
(3) Ch. Baerlocher, L.-B. McCusker and D.-H. Olson, Atlas of zeolite framework types Sixth revised edition, 2007, 1-398.
(4) J.-S. Beck, J.-C. Vartuli, W.-J. Roth, M.-E. Leonowicz, C.-T. Kresge, K.-D. Schmitt, C. T. W. Chu, D.-H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker. A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc., 1992, 114, 10834-10843.
(5) C.-T. Kresge, M.-E. Leonowicz, W.-J. Roth, J.-C. Vartuli and J.-S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359, 710-712.
(6) M.-W. Anderson, Simplified description of MCM-48, Zeolites, 1997, 19, 220-227.
(7) J.-C. Vartuli, C.-T. Kresge, W.-J. Roth, S.-B. McCullen, J.-S. Beck, K.-D. Schmitt, M.-E. Leonowicz, J.-D. Lutner Sheppard in Advanced Catalysts and Nanostructured Materials: Modern Synthesis Methods, Academic Press, New York, 1996, 1-19.
(8) Y.-J. Hao, Y.-Z. Chong, S.-R. Li and H.-Q. Yang, Controlled synthesis of Au nanoparticles in the nanocages of SBA-16: improved activity and enhanced recyclability for the oxidative esterification of alcohols, J. Phys. Chem. C., 2012, 116, 6512-6519
(9) C.-S. Chen, C.-C. Chen, C.-T. Chen and H.-M. Kao, Synthesis of Cu nanoparticles in mesoporous silica SBA-15 functionalized with carboxylic acid groups, Chem. Commun., 2011, 47, 2288-2290.
(10) H.-Y. Wu, F.-K. Shieh, H.-M. Kao, Y.-W. Chen, J. R. Deka, S.-H. Liao and C.-W. Wu, Synthesis, bifunctionalization, and remarkable adsorption performance of benzene-bridged periodic mesoporous organosilicas functionalized with high loadings of carboxylic acids, Chem. Eur. J., 2013, 19, 6358-6367.
(11) Z. Yang, S.-Y. Tao, J.-X. Yin and G.-T. Li, Mesoporous silicas functionalized with a high density of carboxylate groups as efficient absorbents for the removal of basic dyestuffs, J. Mater. Chem., 2006, 16, 2347-2353.
(12) Y.-P. Zhai, Y.-Q. Dou, X.-X. Liu, B. Tu and D.-Y. Zhao, One-pot synthesis of magnetically separable ordered mesoporous carbon, J. Mater. Chem., 2009, 19, 3292-3300.
(13) T. Roussel, R. J. M. Pellenq, M. Bienfait, C. Vix-Guterl, R. Gadiou, F. Béguin and M. Johnson, Thermodynamic and neutron scattering study of hydrogen adsorption in two mesoporous ordered carbons, Langmuir, 2006, 22, 4614-4619.
(14) S.-M. Solberg and C.-C. Landry, Adsorption of DNA into mesoporous silica, J. Phys. Chem. B., 2006, 110, 15261-15268.
(15) Y.-C. Hu, Z.-Z. Zhi, Q.-F. Zhao, C. Wu, P. Zhao, H.-T. Jiang, T.-Y. Jiang and S.-L. Wang, 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol, Microporous Mesoporous Mater., 2012, 147, 94-101.
(16) M.-S. Bhattacharyya, P. Hiwale, M. Piras, Luca Medda, D. Steri, M. Piludu, A. Salis and M. Monduzzi, Lysozyme adsorption and release from ordered mesoporous materials, J. Phys. Chem., 2010, 114, 19928-19934.
(17) A. Vinu, K.-Z. Hossian, P. Srinivasu, Masahiko Miyahara, Srinivasan Anandan, Narasimhan Gokulakrishnan, Toshiyuki Mori, Katsuhiko Arigab and V.-V. Balasubramanianc, Carboxy-mesoporous carbon and its excellent adsorption capability for proteins, J. Mater. Chem, 2007, 17, 1819-1825.
(18) J. Deere, E. Manger, J.-G. Wall and B.-K. Hodnett, Adsorption and activity of cytochrome c on mesoporous silica, Chem. Commun., 2001, 5, 465-465.
(19) Z. Zhou and M. Hartmann, Progress in enzyme immobilization in ordered mesoporous materials and related applications, Chem. Soc. Rev., 2013, 42, 3894-3912.
(20) Z.-X. Li, J.-C. Bames, A. Bosoy, J. Fraser Stoddart and Jeffrey I. Zink, Mesoporous silica nanoparticles in biomedical applications, Chem. Soc. Rev., 2012, 41, 2590-2605.
(21) D.-Y. Zhao, J.-L. Feng, Q.-S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G.-D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 1998, 279, 548-552.
(22) IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem., 1972, 31, 57-57.
(23) N. K. Raman, M.-T. Anderson and C.-J. Brinker, Template-based approaches to the preparation of amorphous nanoporous silicas, Chem. Mater., 1996, 8, 1682-1701.
(24) T.-A. Fayed, M.-H. Shaaban, M.-N. El-Nahass and F.-M. Hassan, Hybrid organic-inorganic mesoporous silicates as optical nanosensor for toxic metals detection, Int. J. Chem. Appl. Bio. Sci., 2014, 1, 74-94.
(25) J.-N. Israelachvili, D.-J. Mitchell and B.-W. Ninham, Theory of self-assembly of lipid bilayers and vesicles, Biochim. Biophys. Acta., 1977, 470, 185-210.
(26) G. J. A. A. Soler-Illia, C. Sanchez, B. Lebeau and J. Patarin, Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures, Chem. Rev., 2002, 102, 4093-4138.
(27) K. Holmberg, B. Jönsson, B. Kronberg and B. Lindman, Surfactants and polymers in aqueous solution, 2nd edition, Wiley, 2002, 1-562.
(28) S. Förster and M. Antonietti, Amphiphilic block copolymers in structure-controlled nanomaterial hybrids, Adv. Mater., 1998, 10, 195-217.
(29) B. Chu, Structure and dynamics of block copolymer colloids, 1995, 11, 414-421.
(30) J.-R. Lopes and W. Loh, Investigation of self-assembly and micelle polarity for a wide range of ethylene oxide-propylene oxide-ethylene oxide block copolymers in water, Langmuir, 1998, 14, 750-756.
(31) M. Almgren, W. Brown and S. Hivdt, Self-aggregation and phase behavior of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers in aqueous solution, Colloid. Polym. Sci., 1995, 273, 2-15.
(32) P. Alexandridis, J.-F. Holzwarthf and T.-A. Hatton, Micellization of poly(ethy1ene oxide)-poly(propy1ene oxide)-poly(ethy1ene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association, Macromolecules, 1994, 27, 2414-2425.
(33) D.-F. Evans‬, H. Wennerström‬, The Colloidal Domain, 2nd Ed.,1999, 1-632.‬‬‬
(34) D.-Y. Zhao, Q.-S. Huo, J.-L. Feng, B.-F. Chmelka and G.-D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 1998, 120, 6024-6036.
(35) J.-M. Kim, Y. Sakamoto, Y.-K. Hwang, Y.-U. Kwon, O. Terasaki, S.-E. Park and G.-D. Stucky, Structural design of mesoporous silica by micelle-packing control using blends of amphophilic block copolymers, J. Phys. Chem. B., 2002, 106, 2552-2558.
(36) G. J. A.A. Soler-Illia, E.-L. Crepaldi, D. Grosso, C. Sanchez, Block copolymer-templated mesoporous oxides, Curr. Opin. Colloid Interface Sci., 2003, 8, 109-126.
(37) F. Kleitz, S. Choi, R. Ryoo, Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes, Chem. Commun., 2003, 17, 2136-2137.
(38) Y. Sakamoto , M. Kaneda, O. Terasaki, D.-Y. Zhao, J.-M. Kim, G. Stucky, H.-J. Shin, R. Ryoo, Direct imaging of the pores and cages of three-dimensional mesoporous materials, Nature, 2000, 408, 449-453.
(39) F. Kleitz, D.-N. Liu, G.-M. Anilkumar, I.-S. Park, L.-A. Solovyov, A.-N. Shmakov and R. Ryoo, Large cage face-centered-cubic Fm3m mesoporous silica: synthesis and structure, J. Phys. Chem. B., 2003, 107, 14296-14300.
(40) F. Kleitz, L.-A. Solovyov, G.-M. Anilkumar, S.-H. Choia and R. Ryoo, Transformation of highly ordered large pore silica mesophases (Fm3m, Im3m and p6mm) in a ternary triblock copolymer-butanol-water system, Chem. Commun., 2004, 13, 1536-1537.
(41) C.-Z. Yu, Y.-H. Yu and D.-Y. Zhao, Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO–PBO–PEO copolymer, Chem. Commun. 2000, 7, 575-576.
(42) J.-R. Matos, M. Kruk, L.-P. Mercuri, M. Jaroniec, L. Zhao, Tomoaki Kamiyama, Osamu Terasaki, T.-J. Pinnavaia and Y. Liu, Ordered mesoporous silica with large cage-like pores: structural identification and pore connectivity design by controlling the synthesis temperature and time, J. Am. Chem. Soc., 2003, 125, 821-829.
(43) Q.-S. Huo, D.-I. Margolese, U. Ciesla, P.-Y. Feng, T.-E. Gler, P. Sieger, R. Leon, P.-M. Petroff, F. Schuth and G.-D. Stucky, Generalized synthesis of periodic surfactant/inorganic composite materials, Nature, 1994, 368, 317-321.
(44) F. Hoffmann, M. Cornelius, Jürgen Morell and M. Fröba, Silica-based mesoporous organic-inorganic hybrid materials, Angew. Chem. Int. Ed., 2006, 45, 3216-3251.
(45) R.-K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica, Wiley, 1979, 1-896.
(46) S.-H. Wu, C.-Y. Mou and H.-P. Lin, Chem. Soc. Rev., 2013, 42, 3862-3875.
(47) Z. Zhou and M. Hartmann, Progress in enzyme immobilization in ordered mesoporous materials and related applications, Chem. Soc. Rev., 2013, 42, 3894-3912.
(48) C.-H. Lei, Y.-S. Shin, J. Liu and E.-J. Ackerman, Entrapping enzyme in a functionalized nanoporous support, J. Am. Chem. Soc., 2002, 124, 11242-11243.
(49) N. Liu, R.-A. Assink and C.-J. Brinker, Synthesis and characterization of highly ordered mesoporous thin films with –COOH terminated pore surfaces, Chem. Commun. 2003, 3, 370-371.
(50) C.-M. Yang, B. Zibrowius and F. Schüth, A novel route for negatively charged ordered mesoporous silica SBA-15, Chem. Commun., 2003, 14, 1772-1773.
(51) C.-M. yang, Y. Wang, B. Zibrowius and F. Schüth, Phys. Chem. Chem. Phys., 2004, 6, 2461-2467.
(52) M.-C. Bruzzoniti, A. Prelle, C. Sarzanini, B. Onida, S. Fiorilli and E. Garrone, Retention of heavy metal ions on SBA-15 mesoporous silica functionalized with carboxylic groups, J. Sep. Sci., 2007, 30, 2414-2420.
(53) L. Han, Y. Sakamoto, O. Terasaki, Y.-S. Lia and S. Che, Synthesis of carboxylic group functionalized mesoporous silicas (CFMSs) with various structures, J. Mater. Chem., 2007, 17, 1216-1221.
(54) C.-T. Tsai, Y.-C. Pan, C.-C. Ting, S. Vetrivel, A. S. T. Chiang, G.-T. K. Fey and H.-M. Kao, A simple one-pot route to mesoporous silicas SBA-15 functionalized with exceptionally high loadings of pendant carboxylic acid groups, Chem. Commun., 2009, 33, 5018-5020.
(55) H.-M. Kao, C.-H. Chung, D. Saikia, S.-H. Liao, P.-Y. Chao, Y.-H. Chen and K.-C. Wu, Highly carboxylic-acid-functionalized ethane-bridged periodic mesoporous organosilicas: synthesis, characterization, and adsorption properties, Chem. Asian J., 2012, 7, 2111-2117.
(56) W.-C. Chang, J. R. Deka, H.-Y. Wub, F.-K. Shieha, S.-Y. Huanga and H.-M. Kao, Synthesis and characterization of large pore cubic mesoporous silicasfunctionalized with high contents of carboxylic acid groups and their use as adsorbents, Appl. Catal., B, 2013, 142-143, 817-827.
(57) J. R. Deka, D. Saikia, Y.-S. Lai, C.-H. Tsai, W.-C. Chang and H.-M. Kao, Roles of nanostructures and carboxylic acid functionalization of ordered cubic mesoporous silicas in lysozyme immobilization, Microporous Mesoporous Mater., Article in press.
(58) T.-W. Kim, R. Ryoo, M. Kruk, K.-P. Gierszal, M. Jaroniec, Satoshi Kamiya and Osamu Terasaki, Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time, J. Phys. Chem. B, 2004, 108, 11480-11489.
(59) J. Fan, C.-Z. Yu, J. Lei, Q. Zhang, T.-C. Li, B. Tu, W.-Z. Zhou and D.-Y. Zhao, Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores, J. Am. Chem. Soc., 2005, 127, 10794-10795.
(60) S. Hudson, J. Cooney and E. Magner, Proteins in Mesoporous Silicates, Angew. Chem. Int. Ed., 2008, 47, 8582-8594.
(61) Z. Wu and D.-Y. Zhao, Ordered mesoporous materials as adsorbents, Chem. Commun., 2011, 47, 3332-3338.
(62) Z. Zhou and M. Hartmann, Progress in enzyme immobilization in ordered mesoporous materials and related applications, Chem. Soc. Rev., 2013, 42, 3894-3912.
(63) Http://goo.gl/8ZWXZT , Lysozyme
(64) J.-X. Xu, W.-W. Liu, Y.-F. Yu, J.-J. Du, N. Li and L.-J. Xu, Synthesis of mono-dipersed mesoporous SBA-1 nanoparticles with tunable pore size and their application in lysozyme immobilization, RSC. Adv., 2014, 4, 37470-37478.
(65) W. Bian, L.-L. Lou, B.-Y. Yan, C. Zhang, S.-M. Wu, S.-X. Liu, Immobilization of papain by carboxyl-modified SBA-15: Rechecking the carboxyl after excluding the contribution of H2SO4 treatment, Microporous Mesoporous Mater., 2011, 143, 341-347.
(66) K.-Y. Ho, G. McKay and K.-L. Yeung, Selective adsorbents from ordered mesoporous silica, Langmuir, 2003, 19, 3019-3024.
(67) X.-Y. Jin, M.-Q. Jiang, X.-Q. Shan, Z.-G. Pei and Z.-L. Chen, Adsorption of methylene blue and orange II onto unmodified and surfactant-modified zeolite, J. Colloid Interface Sci., 2008, 328, 243-247.
(68) X. Zhuang, Y. Wan, C. Feng, Y. Shen and D.-Y. Zhao, Highly efficient adsorption of bulky dye molecules in wastewater on ordered mesoporous
carbons, Chem. Mater., 2009, 21, 706-716.
(69) C. Duran, D. Ozdes, A. Gundogdu and H.-B. Senturk, Kinetics and isotherm analysis of basic dyes adsorption onto almond shell (prunus dulcis) as a locost adsorbent, J. Chem. Eng. Data, 2011, 56, 2136-2147.
(70) J. R. Deka, Y.-H. Lin and H.-M. Kao, Ordered cubic mesoporous silica KIT-5 functionalized with carboxylic acid groups for dye removal, RSC. Adv., 2014, 4, 49061-49069.
(71) J. R. Deka, C.-L. Liu, T.-H. Wang, W.-C. Chang and H.-M. Kao, Synthesis of highly phosphonic acid functionalized benzene-bridgedperiodic mesoporous organosilicas for use as efficient dye adsorbents, J. Hazar. Mater., 2014, 278, 539-550.
(72) C.-M. Yang, H.-S. Sheu and K.-J. Chao, Templated synthesis and structural study of densely packed metal nanostructures in MCM-41 and MCM-48, Adv. Funct. Mater., 2002, 12, 143-148.
(73) R. Raja, S. Hermans, D. S. Shephard, B. F. G. Johnson, R. Raja, G. Sankar, S. Bromley and J.-M. Thomas, Preparation and characterization of a highly active bimetallic (Pd-Ru) nanoparticle heterogeneous catalyst, Chem. Commun., 1999, 16, 1571-1572
(74) Y.-J. Han, J.-M. Kim and G. D. Stucky, Prepatation of noble metal nanowires using hexagonal mesoporous silica SBA-15, Chem. Mater., 2000, 12, 2068-2069.
(75) C.-M. Yang ,P.-H. Liu ,Y.-F. Ho ,C.-Y. Chiu and K.-J. Chao, Highly dispersed metal nanoparticles in functionalized SBA-15, Chem. Mater., 2003, 15, 275-280.
(76) M.-Y. Cheng, C.-J. Pana and B.-J. Hwang, Highly-dispersed and thermally-stable NiO nanoparticles exclusively confined in SBA-15: blockage-free nanochannels, J. Mater. Chem., 2009, 19, 5193-5200.
(77) J.-K. Shon, J.-N. Park, S.-H. Hwang, M. Jin, K. Moon, J.-H. Boo, T.-H. Han and J.-M. Kim, Pretreatment effect on CO oxidation over highly ordered mesoporous silver catalyst, Bull. Korean Chem. Soc., 2010, 31, 415-418.
(78) A. Takai, Y. Doi1, Y. Yamauchi1 and K. Kuroda1, A rational repeating template method for synthesis of 2D hexagonally ordered mesoporous precious metals, Asian J. Chem., 2011, 6, 881-887.
(79) A.-T. Shah, B. Li, Z. E. A. Abdalla, Direct synthesis of Cu-SBA-16 by internal pH-modification method and its performance for adsorption of dibenzothiophene, Microporous Mesoporous Mater., 2010, 130, 248-254.
(80) Y.-J. Hao, Y.-Z. Chong, S.-R. Li and H.-Q. Yang, Controlled synthesis of Au nanoparticles in the nanocages of SBA-16: improved activity and enhanced recyclability for the oxidative esterification of alcohols, J. Phys. Chem. C, 2012, 116, 6512-6519.
(81) W.-J. Cai, L. Ye, L. Zhang, Y.-H. Ren, B. Yue, X.-Y. Chen and H.-Y. He, Highly dispersed nickel-containing mesoporous silica with superior stability in carbon dioxide reforming of methane: The effect of anchoring, Materials, 2014, 7, 2340-2355.
(82) C.-M. Yang , B. Zibrowius , W. Schmidt and F. Schüth, Stepwise removal of the copolymer template from mesopores and micropores in SBA-15, Chem. Mater., 2004, 16, 2918-2925.
(83) A. Vinu, M. Miyahara and K. Ariga, Biomaterial immobilization in nanoporous carbon molecular sieves: influence of pH, pore volume, and diameter, J. Phys. Chem. B, 2005, 109, 6436-6441.
(84) L. Ding, Z. Yao, T. Li, M. Qiu, Q. Yue and J. Chai1, Synthesis of macroporous polymer carrier and immobilization of papain, Iranian Polym. J., 2003, 12, 491-495.
(85) Https://www.nsrrc.org.tw/chinese/lightsource.aspx , NSRRC.
(86) 林麗娟, X光繞射原理及其應用, X光材料分析技術與應用專題, 工業材料, 1994, 86, 100-109
(87) S. Brunauer , L. S. Deming , W. E. Deming and E. Teller, On ta theory of the van der waals adsorption of gases, J. Am. Chem. Soc., 1940, 62, 1723-1732.
(88) K. Sing, D.-H. Everett, R. A. W. Haul, L. Moscou, R.-A. Pierotti, J. Rouquerol and T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure & Appl. Chem., 1986, 57, 603-619.
(89) A. Trunschke, Surface area and pore size determination, Modern methods in heterogeneous catalysis research, 2013, 22.
(90) E. P. Barrett , L. G. Joyner and Paul P. Halenda, The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms, J. Am. Chem. Soc., 1951, 73, 373-380.
(91) Http://goo.gl/HXasT0, Infrared spectroscopy.
(92) Http://goo.gl/sX5H, Ultraviolet-visible spectroscopy.
(93) H.-M. Kao, 多核固態核磁共振於孔洞材料結構鑑定之應用, Chemistry (The Chinese Chem. Soc., Taipei ), 2004, 62, 285-298.
(94) D. C. Apperley, R. K. Harris and P. Hodgkinson, Solid-state NMR: basic principles & practice, Momentum press, LLC, New York, 2012.
(95) Http://goo.gl/IcjlaR, 旋磁比.
(96) S.-C. Lo, 研發奈米科技的基本工具之一 電子顯微鏡介紹-SEM, 小奈米大世界期刊
(97) S.-C. Lo, 研發奈米科技的基本工具之一 電子顯微鏡介紹-TEM, 小奈米大世界期刊
(98) Http://goo.gl/TQwQ4L, Thermo Gravimetric Analyzer.
(99) Http://goo.gl/THVZYO, Particle size and zeta potential analyzer.
(100) Http://goo.gl/N2dHmO, Inductively coupled plasma optical emission
spectrometer.
(101) Http://goo.gl/ljDjpi, ICP/OES 原理概論
(102) A. Dada, A. Olalekan, A.-M. Olatunya and DADA, Langmuir, Freundlich,
Temkin and Dubinin–Radushkevich isotherms studies of bequilibrium
sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR J. Appl.
Chem., 2012, 3, 38-45.
(103) F.-A. Dawodu, G.-K. Akpomie and I.-C. Ogbu, Isotherm modeling on the
equilibrium Sorption of cadmium (II) from solution by agbani clay, Int. J.
Multi. Sci. Eng., 2012, 3, 9-14
(104) M. Vadi, M. Abbasi, M. Zakeri and B.-J. Yazdi, Application of the
Freundlich , Langmuir, Temkin and Harkins-Jura adsorption isotherms for
some amino acids and amino acids complexation with manganese ion (II)
on carbon nanotube, International Conference on Nanotechnology and
Biosensors, 2011, 2, 117-119.
(105) D.-J. O′Shannessy and D.-J. Winzor, Interpretation of deviations from
pseudo-first-order kinetic behavior in the characterization of ligand
binding by biosensor technology, Anal Biochem., 1996, 2, 275-283.
(106) Y.-S. Ho, Review of second-order models for adsorption systems, J.
Hazard. Mater., 2006, 136, 681-689.
(107) M.-N. Sarvi, T.-B. Bee, C.-K. Gooi, B.-W. Woonton, M.-L. Gee and A.-J.
O’Connor, Development of functionalized mesoporous silica for adsorption and separation of diary proteins, Chem. Eng. J., 2014, 235, 244-251.
(108) H. Qiu, L. Lv, B.-C. Pan, Q.-J. Zhang, W.-M. Zhang and Q.-X. Zhang,
Critical review in adsorption kinetic models, J. Zhejiang Univ. Sci. A, 2009, 10, 716-724.
(109) W.-H. Cheung, Y.-S. Szeto and G. McKay, Intraparticle diffusion processes during acid dye adsorption onto chitosan, Bioresour. Technol., 2007, 98, 2897-2904.
(110) Y.-H. Wu, M.-L, Zhang, H.-Y. Zhao, S.-X. Yang and A. Arkin,
Functionalized mesoporous silica material and anionic dye adsorption:
MCM-41 incorporated with amine groups for competitive adsorption of
Acid Fuchsine and Acid Orange II, RSC Adv., 2014, 4, 61256-61267.
(111) F.-C. Wu, R.-L. Tseng and R.-S. Juang, Kinetic modeing of luquid-phase
adsorption of reactive dyes and metal ions on chitosan, Wat. Res., 2001,
35, 613-618.
(112) K. Niu, W. Dong, M.-Q. Chen and Z.-B. Ni, Synthesis and
characterization of NiO/mesoporous silica nanocomposite, Integrated
Ferroelectrics, 2011, 128, 135-141.
(113) C.-L. Bii, G.-U. Kao, T.-L. Lai, Y.-Y. Shu and C.-B. Wong, 奈米氧化鎳
製備及熱特性分析, Chemistry (The Chinese Chem. Soc., Taipei), 2006,
64, 161-170.
(114) D.-S. Ling, L.-Q. Gao, J.-P. Wang, M. Shokouhimehr, J.-H. Liu, Y.-S. Yu,
M. J. Hackett, P.-K. So, B. Zheng, Z.-P. Yao, J. Xia and T. Hyeon, A
general strategy for site-directed enzyme immobilization by using NiO
nanoparticle decorated mesoporous silica, Chem. Eur. J., 2014, 20,
7916-7921.
(115) B. Naik, S. Hazra, V. S. Prasad and N. N. Ghosh, Synthesis of Ag
nanoparticles within the pores of SBA-15: An efficient catalyst for
reduction of 4-nitrophenol, Cata. Commun., 2011, 12, 1104-1108.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明