博碩士論文 102223026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.238.90.95
姓名 吳家樂(Chia-le Wu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用掃描式電子穿隧顯微鏡研究 Cysteine betaine 在金(111)上之吸附結構
相關論文
★ 岐狀結構材料在鋰電池的應用★ Adsorption and Electrochemical Polymerization of Pyrrole on Au (100) Electrode as Examine by In Situ Scanning Tunneling Microscopy
★ Synthesis and Characterization of Cyclopentadithiophene (CDT) based Organic Photovoltaic and Pyrazine Contained Hole Transporting Small Molecules★ 有機碘化物在金、銠、鉑(111)電極和有機二硫醇化物在鉑(111)電極的吸附結構
★ STM研究銥(111)上碘、一氧化碳和一氧化氮的吸附及銅(100)上鎳和鉛的沈積★ 利用掃描式電子穿隧顯微鏡觀察鍍銅在鉑(111)及銠(111)電極表面
★ 使用in-situ STM和循環伏安儀研究銅和銀在碘修飾的鉑(100)電極之沈積過程★ 利用in-situ STM觀察銅(100)電極上鉛與鎳的沉積過程
★ 利用in-situ STM觀察硫酸根、氧及碘在釕(001)電極和醋酸、間苯三酚在銠(111)電極的吸附結構★ 掃描式電子穿隧顯微鏡及循環伏安法對 有機碘化物在鉑(111)電極上的研究
★ 半導體碘化鉛薄膜在單結晶銠電極上的研究★ 利用掃描式電子穿隧顯微鏡觀察汞薄膜在銥(111)電極上鹵素的吸附結構
★ 掃描式電子穿隧顯微鏡研究碘原子對汞在 銥(111)、鉑(111)及銠(111)上沈積的影響★ 掃描式電子穿隧顯微鏡對烷基及芳基硫醇分子在鉑(111)及金(111)上之研究
★ 掃描式電子穿隧顯微鏡研究一氧化碳、硫、硫醇分子及氯在釕(001)上的吸附結構★ 硫氧化物及聚賽吩衍生物 在金、鉑電極上之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文主要分成兩個部分,第一個部分為cysteine betaine 自組裝在金(111),依不同電位、陰離子、與pH值,觀察其吸附結構。在0.1M過氯酸、0.4~0.7V,cysteine betaine會以平躺的方式吸附,主要結構為(√21×√37)與(8×8),覆蓋度為0.093。0.75V時,分子會形成如直立蜂窩狀(6×6)之結構,覆蓋度為0.083;0.8V後分子會有氧化的現象。而在0.1M硫酸0.3~0.5V條件下,會出現結構為(4×5)、覆蓋度為0.2的分子結構。由於硫酸氫根在正電位與分子有競爭吸附,導致在瞬間調整至0.7V時,分子會有雜亂的現象。再將電位調整回0.3V時,整齊結構又會出現,但會有不一樣的結構與覆蓋度,主要的結構為(√7×7),覆蓋度0.19,相較於(4×5),覆蓋度變低。0.6V時,分子吸附位向會變為直立、區塊小的結構,結構為(4√3×√21)、(√43×√21),覆蓋度為0.055與0.059。而在電解液中添加0.3μM cysteine betaine分子的條件下,過氯酸與硫酸皆在0.3~0.5V的會有(4×5)與(√7×7)的結構,硫酸在0.3~0.5V另外出現低覆蓋度結構(8×5√3)與(4×3√3),覆蓋度分別為0.0375與0.167;過氯酸在0.7V會出現直立結構(√21×12)與(4×4√3),覆蓋度分別為0.133與0.125。在不同的pH的實驗中,分子會因為不同的pH值帶不同的電性,pH<4.36帶正電,pH>4.36帶負電。STM中在pH=3硫酸鉀電解液會在0.1~0.4V出現(4×5)的結構,覆蓋度0.2;在pH=7.7的PBS情況下,0.3~0.9V出現(√19×3√3) ,覆蓋度0.167。pH=10.9的硫酸鉀電解液,0.4~1V有(√7×7)覆蓋度0.19的主要結構。pH=12.67的PBS在0.7~1.2V出現(4×5),覆蓋度0.2的結構。
第二部分為聚苯胺正電位的分解與使用STM測量聚苯胺電導率的研究。在聚苯胺氧化分解方面,由CV圖中不論在厚層、薄層聚苯胺在0.9~1.4V區間,電流皆有遞減現象。在STM圖中,聚苯胺在0.92V會有彎曲分解現象,0.98V幾乎完全分解。在聚苯胺構型變化實驗中,硫酸聚合之聚苯胺要由彎曲變回直鏈構型需在0.88V,比硝酸與過氯酸更不易辦到(0.8V)。電導率方面,量測不同構型鹽式中間態聚苯胺:薄層聚苯胺0.4V > 0.6V > 0.8V;厚層聚苯胺 0.4V > 0.8V≥0.6V,得知此量測方法與薄膜的堆積緊密度有關,當薄膜排列密度越高電導度越差,反之越鬆散電導率越佳。
摘要(英) Two separate subjects are addressed in this thesis. Part I describes cyclic voltammetry (CV) and in situ scanning tunneling microscopy (STM) results obtained with cysteine betaine adsorbed on a Au(111) electrode as a function of potential, anion and pH. In 0.1M perchloric acid, cysteine betaine was adsorbed mainly in stripe structures designated as(√21×√37) and((8×8) with a coverage (Ɵ) of 0.093 between 0.4 to 0.7V (vs. reversible hydrogen electrode). At 0.75V, these stripe structure transformed into a honeycomb-like structure characterized as (6×6), Ɵ = 0.083. Cysteine betaine molecule was oxidized at E > 0.8V. In 0.1M sulfuric acid, a structure(4×5), Ɵ = 0.2 consisted of betaine between 0.3 to 0.5V, but bisulfate anions competed with cysteine for adsorption on the Au(111) electrode, resulting in a pronounced order-to-disorder phase transition at 0.7V. This transition was quasi-reversible, as the stripe structure appeared again, once the potential was made to 0.3V. The main stripe structure became(√7×7) with a coverage of 0.19 at 0.3V, whose coverage is 5% lower than that of (4×5). At 0.6V, the stripe structure turned into two vertical structures(4√3×√21)and(√43×√21)with a coverage of 0.055 and 0.059 among a mainly disordered adlayer. To both perchloric acid and sulfuric acid, adding cysteine betaine 0.3μM resulted in stripe structures, (4×5) and (√7×7), between 0.3 to 0.5V. (8×5√3) and (4×3√3) structures (Ɵ = 0.0375 and 0.167) were found in sulfuric acid, which contrast (√21×12) and (4×4√3), (Ɵ = 0.133 and 0.125) in perchloric acid. Being a zwitterion ion, betaine is either positively charged or neutral when pH is lower or greater than 4.36. In pH3, 7, 10.9, and 12.67 media, in situ STM revealed (4×5),(√19×3√3)and(√7×7) and structures under proper potential control.
Part II addresses the decomposition of polyaniline (PANI) at positive potential and the conductivity of PANI using STM. Regardless of monolayer or multilayer PANI, CV results show decomposition between 0.9 to 1.4V by CV. PANI chains shortened at 0.92V and vastly degraded at 0.98V. The reversibility of PANI’s conformation between straight and crooked forms in sulfuric acid were examined in nitric acid, sulfuric acid, and perchloric acid. The conversion from crooked to straight form occurred at 0.88V in sulfuric acid, as opposed to 0.8V seen in nitric acid or perchloric acid. The conductivity of different conformation PANI measured by STM. Results show that poor correlation between conductivity and anions and variation with potential, in particular, conductivity decreased with more positive potential.
關鍵字(中) ★ 掃描式電子穿隧顯微鏡
★ 半胱胺酸甜菜鹼
關鍵字(英) ★ in situ STM
★ Cysteine betaine
論文目次 摘要 I
Abstract VI
圖目錄 X
表目錄 XVI
第一章 緒論 1
1-1抗生物沾黏 1
1-2自組裝分子膜(Self-Assembled Monolayers,SAMs) 2
1-3相關文獻與研究動機 4
第二章 實驗部分 6
2-1化學藥品 6
2-2氣體 6
2-3金屬部分 7
2-4儀器設備 7
2-5實驗步驟 8
第三章 陰離子與pH值對cysteine betaine 自組裝結構影響 10
3-1-1 cysteine與cysteine betaine自組裝在金(111)CV圖(過氯酸) 10
3-1-2 cysteine與cysteine betaine自組裝在金(111)之STM (過氯酸) 11
3-2-1 cysteine與cysteine betaine自組裝在金(111)CV圖(硫酸) 13
3-2-2 cysteine與cysteine betaine自組裝在金(111)STM圖(硫酸) 14
3-3-1 含cysteine betaine電解液在金(111)CV圖(過氯酸) 16
3-3-2含cysteine betaine電解液在金(111)STM圖(過氯酸) 17
3-4-1含cysteine betaine電解液在金(111)CV圖(硫酸) 18
3-4-2含cysteine betaine電解液在金(111)STM圖(硫酸) 18
3-5-1 pH值對cysteine betaine吸附於金(111)上之影響(CV) 19
3-5-2 pH值對cysteine betaine吸附於金(111)之影響(STM) 20
3-6改變pH值對cysteine betaine自組裝影響之STM 23
3-7結論 24
第四章 聚苯胺正電位的分解與使用STM測量聚苯胺電導率 97
4-1電化學方法合成聚苯胺之研究 97
4-2聚苯胺的在正電位氧化研究 97
4-3硫酸條件下聚苯胺構型可逆性研究 98
4-4用STM測量聚苯胺電導率 99
4-5 結論 102
第五章 參考文獻 117
參考文獻 1. Luk, Y. Y.; Kato, M.; Mrksich, M. Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 2000, 16 (24), 9604-9608.
2. Ostuni, E.; Chapman, R. G.; Holmlin, R. E.; Takayama, S.; Whitesides, G. M. A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 2001, 17 (18), 5605-5620.
3. Liu, A. C.; Chen, D. C.; Lin, C. C.; Chou, H. H.; Chen, C. H. Application of cysteine monolayers for electrochemical determination of sub-ppb copper(II). Anal. Chem. 1999, 71 (8), 1549-1552.
4. Bigelow, W. C.; Pickett, D. L.; Zisman, W. A. Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. Journal of Colloid Science 1946, 1 (6), 513-538.
5. Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 1996, 96 (4), 1533-1554.
6. Nuzzo, R. G.; Allara, D. L. Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 1983, 105 (13), 4481-4483.
7. Lee, S. H.; Lin, W. C.; Kuo, C. H.; Karakachian, M.; Lin, Y. C.; Yu, B. Y.; Shyue, J. J. Photooxidation of Amine-Terminated Self-Assembled Monolayers on Gold. J. Phys. Chem. C 2010, 114 (23), 10512-10519.
8. Kuhnle, A.; Linderoth, T. R.; Hammer, B.; Besenbacher, F. Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunnelling microscopy. Nature 2002, 415 (6874), 891-893.
9. Dakkouri, A. S.; Kolb, D. M.; EdelsteinShima, R.; Mandler, D. Scanning tunneling microscopy study of L-cysteine an Au(111). Langmuir 1996, 12 (11), 2849-2852.
10. Xu, Q. M.; Wan, L. J.; Wang, C.; Bai, C. L.; Wang, Z. Y.; Nozawa, T. New structure of L-cysteine self-assembled monolayer on Au(111): Studies by in situ scanning tunneling microscopy. Langmuir 2001, 17 (20), 6203-6206.
11. Zhang, J. D.; Chi, Q. J.; Nielsen, J. U.; Friis, E. P.; Andersen, J. E. T.; Ulstrup, J. Two-dimensional cysteine and cystine cluster networks on Au(111) disclosed by voltammetry and in situ scanning tunneling microscopy. Langmuir 2000, 16 (18), 7229-7237.
12. Zhang, H. M.; Su, G. J.; Wang, D.; Wan, L. J.; Jin, G.; Bai, C. L.; Zhou, Z. L. Adlayer structures of DL-homocysteine and L-homocysteine thiolactone on Au(111) surface: an in situ STM study. Electrochim. Acta 2004, 49 (9-10), 1629-1633.
13. Zhang, J. D.; Demetriou, A.; Welinder, A. C.; Albrecht, T.; Nichols, R. J.; Ulstrup, J. Potential-induced structural transitions of DL-homocysteine monolayers on Au(111) electrode surfaces. Chem. Phys. 2005, 319 (1-3), 210-221.
14. Yanson, Y.; Frenken, J. W. M.; Rost, M. J. A general model of metal underpotential deposition in the presence of thiol-based additives based on an in situ STM study. PCCP 2011, 13 (35), 16095-16103.
15. 陳思孜. 利用掃描式電子穿隧顯微鏡探討聚苯胺及其衍生物在金(111)電極上之吸附與構型變化. 國立中央大學, 桃園縣, 2014.
16. Yan, J. W.; Ouyang, R. H.; Jensen, P. S.; Ascic, E.; Tanner, D.; Mao, B. W.; Zhang, J. D.; Tang, C. G.; Hush, N. S.; Ulstrup, J.; Reimers, J. R. Controlling the Stereochemistry and Regularity of Butanethiol Self-Assembled Mono layers on Au(111). J. Am. Chem. Soc. 2014, 136 (49), 17087-17094.
指導教授 姚學麟(Shueh-lin Yau) 審核日期 2015-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明