博碩士論文 102223041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.238.184.78
姓名 李佳(Chia Li)  查詢紙本館藏   畢業系所 化學學系
論文名稱 具長碳鏈釕金屬錯合物染料搭配鈷金屬撮合物應用於染料敏化太陽能電池
(Application of ruthenium-based dye with long alkyl chain using cobalt tris(bipyridine) electrolyte in dye sensitized solar cells)
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 染料敏化太陽能電池 ( Dye-Sensitized Solar Cells, DSSCs ) 由於具有透光性、可撓曲性、良好的光電轉換效率與低製造成本等優點,是目前相當熱門的研究領域之ㄧ。在 DSSC 中最常使用的是I-/I3-電解質,但I-/I3-沒有辦法經由結構修飾來增加元件效率。因此,使用鈷金屬錯合物電解質來提高元件的Voc是常用的策略。但是鈷金屬錯合物電解質容易與 TiO2 上的電子產生再結合,影響元件的光電轉換效率。本研究是從本實驗室所合成出的一系列染料中,選擇了尾端具有碳鏈的染料 SJW-B18 和 CYC-B11H 來搭配鈷金屬錯合物電解質組裝成染料敏化太陽能電池,探討釕金屬錯合物結構上加入了長碳鏈是否可以有效的避免鈷金屬錯合物和 TiO2 上的電子再結合,進而提高元件的光電轉換效率。將 SJW-B18 分別和鈷錯合物電解質以及碘系統電解質組裝成元件。在使用鈷錯合物電解質的元件,因為鈷錯合物的還原電位較低,因此元件的Voc值較高(0.814 V,相對於使用I-/I3-的0.781 V)。此外,為了進一步了解染料結構上碳鏈數對鈷電解質的影響,將本實驗室所合成出的另一個高效率染料 CYC-B11H 也搭配鈷電解質組裝成 DSSC 元件並測試其光電表現。實驗結果顯示,使用輔助配為基上具有四個烷基的SJW-B18為敏化劑時,由於染料在二氧化鈦電極上的覆蓋度較好,避免了鈷金屬錯合物與 TiO2 上的電子產生再結合,元件的Voc值損耗較少,讓元件有較高的Voc(0.814 V)及光電轉換效率(7.08%),而最優化的鈷錯合物電解質的組成為0.2 M Co(II), 0.02 M Co(III), 0.5 M TBP和 0.1 M LiClO4配置在乙腈溶劑中。
摘要(英) Dye-sensitized solar cells (DSSCs), one of the third generation solar cells, are getting more popular these days, due to their light weight, low cost and easy to make. In DSSCs, electrolyte plays the role of re- generating the oxidized dye, transferring hole to the counter electrode and determining the theoretical Voc of the devices. The most common electrolyte used in DSSCs is iodide/triiodide (I-/I3-) redox couple. However, I-/I3- redox system has some disadvantages, such as the fixed redox potential and the structure of the electrolyte can not be modified, which limits it development. Many scientists are now looking for new electrolytes to increase the efficiency of DSSCs. Cobalt based electrolyte, due to it adjustable potential which can be used to increase the Voc of DSSCs, is one of the potential electrolytes. However, cobalt based electrolyte has the disadvantage of easily capture the electron on TiO2 electrode, increasing the dark current, therefore reducing Voc of the device. We use the SJW-B18 and CYC-B11H with long alkyl chain on their ancillary ligand developed by our lab to avoid the charge re- combination. In the study, we found that compared to CYC-B11H dye using SJW-B18 dye, which has 4 terminal alkyl chain, as a sesitizer can protect the surface of TiO2 electrode, increase the resistance between dye adsorbed on TiO2 electrode and electrolyte, prevent the dark current, increase the life time of the electron on TiO2 electrode and decrease the loss of Voc. The highest efficiency of the device based on SJW-B18 dye combined with cobalt electrolyte is 7.08%. The optimal composition of the electrolyte is 0.2 M Co(II), 0.02 M Co(III), 0.5 M TBP and 0.1 M LiClO4 in acetonitrile.
關鍵字(中) ★ 染料敏化太陽能電池
★ 鈷金屬錯合物
★ 染料
關鍵字(英)
論文目次 【目錄】
中文摘要 i
Abstract ii
【目錄】 iv
圖目錄 vi
表目錄 xi
第一章、緒論 1
1.1前言 1
1.2染料敏化太陽能電池(DSSC)的組成以及工作原理 2
1.2.1染料敏化太陽能電池基本工作原理 2
1.2.2 染料敏化太陽能電池光電轉換效率測試 3
1.3 影響染料敏化太陽能電池效率的因素 4
1.4 用於染料敏化太陽能電池之電解質特性 13
1.5 研究動機 21
第二章、實驗方法 23
2.1 實驗藥品與儀器 23
2.2 二氧化鈦奈米顆粒的合成與漿料製備 26
2.2.1 二氧化鈦奈米顆粒的合成 26
2.2.2 適用於網印機 ( Screen Printing )鍍膜之二氧化鈦漿料製備 27
2.3 鈷金屬錯合物氧化還原對 (Cobalt Complexes )的合成 28
2.3.1 Co(bipy)3(PF6)2與Co(bipy)3(PF6)3的合成 28
2.3.2 Cobalt (II) / Cobalt(III) 的電解液製備 29
2.4 染料敏化太陽能電池元件的組裝 29
2.4.1 二氧化鈦電極的製備與修飾 29
2.4.2 Pt對電極的製備 31
2.4.3 太陽能電池元件的組裝及效率測試 31
2.5 儀器分析與樣品製備 32
2.5.1 掃描式電子顯微鏡 32
2.5.2 太陽光模擬器及光電轉換效率測量 32
2.5.3 太陽能電池外部量子效率量測系統 33
2.5.4紫外光/可見光/近紅外光吸收光譜 34
2.5.5 光強度調製光電流/光電壓分析儀 34
2.5.6 交流阻抗分析儀 35
第三章、結果與討論 37
3.1 具有不同輔助配位基之光敏劑搭配碘系統電解質對光電轉換效率的影響 37
3.2 鈷金屬錯合物電解質組成對元件光電轉換效率的影響 39
3.3 電解質中二價鈷金屬的錯合物濃度對元件效率的影響 41
3.4 三價鈷金屬錯合物濃度對元件光電轉換效率的影響 44
3.5 電解質中TBP(4-tert-butylpyridine)濃度改變對元件光電轉換效率的影響 46
3.6 不同粒徑大小的二氧化鈦奈米顆粒對元件光電轉換效率的影響 48
3.7 TiO2漿料內乙基纖維素濃度改變對元件光電轉換效率的影響 51
3.8 不同二氧化鈦薄膜厚度對元件光電轉換效率的影響 55
3.9 改變散射層對元件光電轉換效率的影響 57
3.10 二氧化鈦奈米顆粒的合成方式對由其所組裝之元件的光電表現的影響 60
3.11 染料SJW-B18搭配鈷金屬錯合物電解質和搭配碘系統電解質的比較 63
3.11.1 使用4+4 μm電極(薄電極) 63
3.11.2 使用12+4 μm電極(厚電極) 66
3.12 染料SJW-B18和染料CYC-B11H搭配鈷金屬電解質所組裝之元件的性能比較 70
3.12.1使用4+4 μm電極(薄電極) 70
3.12.2使用12+4 μm電極(厚電極) 75
第四章 結論 81
參考文獻 83
附錄 90
參考文獻 [1] A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. O’Regan, B. and Gratzel, M. Nature, 1991, 353, 737-739.
[2] Controlled electron injection and transport at materials interfaces in dyesensitized solar cells. Thavasi, V.; Renugopalakrishnan, V.; Jose, R. and Ramakrishna, S. Mater. Sci. Eng. R, 2009, 63, 81-99.
[3] Highly efficient dye-sensitized solar cells composed of mesoporous titanium dioxide. Wei, M.; Konishi, Y.; Zhou, H.; Yanagida, M.; Sugihara, H. and Arakawa, H. J. Mater. Chem 2006, 16, 1287-1293
[4] Dye-Sensitized Solar Cells. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L. and Pettersson, H. Chem. Rev. 2010, 110, 6595-6663.
[5] High-Performance TiO2 Photoanode with an Efficient Electron Transport Network for Dye-Sensitized Solar Cells. Yu, H.; Zhang, S.; Zhao, H.; Xue, B.; Liu, P. and Will, G. J. Phys. Chem. C. 2009, 113, 16277-16282.
[6] Effects of a surfactant-templated nanoporous TiO2 interlayer on dye-sensitized solar cells. Ahn, K. S.; Kang, M. S.; Lee, J. W. and Kang, Y. S. J. Appl. Phy. 2007, 101, 84312.
[7] Microstructure Design of Nanoporous TiO2 Photoelectrodes for Dye-Sensitized Solar Cell Modules. Hu, L.; Dai, S.; Weng, J.; Xiao, S.; Sui, Y.; Huang, Y.; Chen, S.; Kong, F.; Pan, X.; Liang, L. and Wang, K. J. Phys. Chem. B 2007, 111, 358-362.
[8] Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry– Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N. and Gräetzel, M. J. Am. Chem. Soc. 1993, 115, 6382-6390.
[9] Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Nazeeruddin, S. M.; Humphry– Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A. and Graetzel, M. J. Am. Chem. Soc. 2001, 123, 1613-1624.
[10] High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States. Yu, Q. J.; Wang, Y. H.; Yi, Z. H.; Zu, N. N.; Zhang, J.; Zhang, M. and Wang, P. ACS Nano, 2010, 4, 6032–6038
[11] Electrolyte Exceed 12 Percent Efficiency Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox. Yella, A.; Lee, H. W.; Tsao, H. N; Yi, C.; Chandiran, A. K.; Nazeeruddin, Md. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M. and Grätzel, M. Science. 2011, 334, 629-633
[12] Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Mathew, S.; Yella, A.; Gao, P.; H-Baker, R.; Curchod, B. F. E.; A-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin ,M. K. and Grätzel,M. Nat. Chem , 2014, 6, 242-247
[13] Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Hauch, A. and Georg, A. Electrochim. Acta.2001, 46, 3457-3466.
[14] Iodine-free redox couples for dye-sensitized solar cells. Tian, H. and Sun,L. J. Mater. Chem. 2011, 21, 10592–10601.15.
[15] Iodine/Iodide-Free Dye-Sensitized Solar Cells. Yanagida, S.; Yu, Y. and Manseki, K. Acc. Chem. Res. 2009, 42, 1827–1838.
[16] Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells:  A Study by Intensity Modulated Photovoltage Spectroscopy. Schlichthorl, G.; Huang, S. Y.; Sprague, J. and Frank, A. J. J. Phys. Chem. B. 1997,101, 8141-8155.
[17] Influence of 4-tert-Butylpyridine in DSCs with CoII/III Redox Mediator. Koh, T. M.; Nonomura, K.; Mathews, N.; Hagfeldt, A.; Grätzel, M.; Mhaisalkar, S. G. and Grimsdale, A. C. J. Phys. Chem. C. 2013, 117, 15515−15522
[18] Lithium-Modulated Conduction Band Edge Shifts and Charge-Transfer Dynamics in Dye-Sensitized Solar Cells Based on a Dicyanamide Ionic Liquid. Bai, Y.; Zhang, J.; Wang, Y.; Zhang, M. and Wang, P. Langmuir,2011, 27, 4749–4755.
[19] Roles of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cells (2):  The Case of Solar Cells Using Cobalt Complex Redox Couples. Nakade, S.; Makimoto,Y.; Kubo,W.; Kitamura, T.; Wada, Y. and Yanagida, S. J. Phys. Chem. B, 2005, 109, 3488-3493.
[20] Open-Circuit Voltage Enhancement on the Basis of Polymer Gel Electrolyte for a Highly Stable Dye-Sensitized Solar Cell. Wu, C.; Jia, L.; Guo, S.; Han, S.; Chi,B.; Pu, J. and Jian, L. Appl. Mater. Interfaces, 2013, 5, 7886-7892.
[21] Imidazolium functionalized cobalt tris(bipyridyl) complex redox shuttles for high efficiency ionic liquid electrolyte dye-sensitized solar cells. Xu, D.; Zhang, H.; Chen, X. and Yan, F. J. Mater. Chem. A, 2013, 1, 11933–11941.
[22] Iodine iodide-free redox shuttles for liquid electrolyte-based dye-sensitized. Cong, J.; Yang, X.; Kloob, L. and Sun, L. Energy Enviro. Sci., 2012, 5, 9180-9194.
[23] Efficient Eosin Y Dye-Sensitized Solar Cell Containing Br-/Br3- Electrolyte. Wang, Z.S.; Sayama, K. and Sugihara, H. J. Phys. Chem. B, 2005, 109, 22449–22455.
[24] Two Novel Carbazole Dyes for Dye-Sensitized Solar Cells with Open-Circuit Voltages up to 1 V Based on Br−/Br3− Electrolytes. Teng, C.; Yang, X.; Yuan, C.; Li, C.; Chen, R.; Tian, H.; Li, S.; Hagfeldt, A. and Sun, L. Org. Lett., 2009, 11, 5542–5545.
[25] The 2,2,6,6-Tetramethyl-1-piperidinyloxy Radical: An Efficient, Iodine- Free Redox Mediator for Dye-Sensitized Solar Cells. Zhang, Z.; Chen, P.; Murakami, T. N.; Zakeeruddin,S. M. and Grätzel, M. Adv. Funct. Mater., 2008, 18, 341–346.
[26] Efficient dye-sensitized solar cells based on an iodine-free electrolyte using L-cysteine/L-cystine as a redox couple. Cheng, M.; Yang, X.; Li, S.; Wang, X. and Sun, L. Energy Environ. Sci., 2012, 5, 6290–6293.
[27] Influence of the counter electrode on the photovoltaic performance of dye-sensitized solar cells using a disulfide/thiolate redox electrolyte. Burschka, J.; Brault, V.; Ahmad, S.; Breau, L.; Nazeeruddin, M. K.; Marsan, B.; Zakeeruddin, S. M. and Grätzel, M. Energy Environ.Sci., 2012, 5, 6089–6097
[28] High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Daeneke, T.; Kwon, T. H.; Holmes, A. B.; Duffy, N. W.; Bach, U. and Spiccia, L. Nat. Chem., 2011, 3, 211–215.
[29] CoII(dbbip)22+ Complex Rivals Tri-iodide/Iodide Redox Mediator in Dye-Sensitized Photovoltaic Cells. Nusbaumer, H.; Moser, J. E.; Zakeeruddin, S. M.; Nazeeruddin, M. K. and Grätzel, M. J. Phys. Chem. B, 2001, 105, 10461–10464
[30] Design of Organic Dyes and Cobalt Polypyridine Redox Mediators for High-Efficiency Dye-Sensitized Solar Cells. Feldt, S. M.; Gibson, E. A.; Gabrielsson, E.; Sun, L.; Boschloo, G. and Hagfeldt, A. J.Am. Chem. Soc., 2010, 132, 16714-16724.
[31] Cobalt Redox Mediators for Ruthenium-Based Dye-Sensitized Solar Cells: A Combined Impedance Spectroscopy and Near-IR Transmittance Study. Liu, Y.; Jennings, J. R.; Huang, Y.; Wang, Q.; Zakeeruddin, S. M. and Grätzel, M. J. Phys. Chem. C., 2011, 115, 18847-18855.
[32] Towards Compatibility between Ruthenium Sensitizers and Cobalt Electrolytes in Dye-Sensitized Solar Cells. Polander, L. E.; Yella, A.; Curchod, B- F. E.; Astani, N-A.; Teuscher, J.; Scopelliti, R.; Gao, P.; Mathew, S.; Moser, J. E.; Tavernelli, I.; Rothlisberger, U.; Grätzel, M.; Nazeeruddin, M-K and Frey, J. Angew. Chem. Int. Ed.,2013, 52, 8731–8735.
[33] Charge Transport and Back Reaction in Solid-State Dye-Sensitized Solar Cells:  A Study Using Intensity-Modulated Photovoltage and Photocurrent Spectroscopy. Kru1ger, J.; Plass, R.; Grätzel, M.; Cameron, P. J. and Peter, L. M. J. Phys. Chem. B, 2003, 107, 7536-7539.
[34] Ion Coordinating Sensitizer for High Efficiency Mesoscopic Dye-Sensitized Solar Cells:  Influence of Lithium Ions on the Photovoltaic Performance of Liquid and Solid-State Cells. Kuang, D.; Klein, C.; Snaith, H. J.; Moser, J.-E; Humphry-Baker, R.; Comte, P.; Zakeeruddin, S. M. and Grätzel, M. Nano Lett. 2006, 4, 769.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2014-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明