博碩士論文 102223042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.118.200.136
姓名 黃亞揚(Ya-Yang Huang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用
(Synthesis of Carboxylic Acid Functionalized Mesoporous Silica SBA-15 : Studies on Dye Adsorption and Fabrication of Silver Nanoparticles for Catalytic Reactions)
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 中孔洞碳材於高效能鋰離子電池之應用★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用
★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用
★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用★ 以金屬氧化物ZnO及MgO修飾有序中孔洞碳材CMK-8於高效能鋰離子電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要是利用非離子型界面活性劑P123作為模板,將具有羧酸官能基的矽源CES (Carboxyethylsilanetriol sodium salt) 和TEOS (Tetraethyl orthosilicate) 作為共同矽源在酸性條件下以直接共聚合成法進行合成,可得到二維六角柱狀之中孔洞材料,並分別探討羧酸官能基化之中孔洞材料對染料吸附應用和吸附金屬離子加以還原成金屬奈米顆粒及應用兩大部分。
第一部分是利用合成出之羧酸官能基化中孔洞材料,其簡稱STC-x,x = [CES/(CES+TEOS)] 應用在移除廢水中染料亞甲基藍及孔雀石綠。以STC-x (x = 0, 10, 30, 50) 探討對染料的吸附,發現pH值愈高與官能基含量提高皆有助於提高吸附量,並且將吸附數據代入吸附模型,Langmuir等溫吸附模式比 Freundlich等溫吸附模式更適合描述STC-x吸附染料之系統,並且比較此兩種染料的吸附情形,發現STC-x對亞甲基藍之吸附效果較佳。
第二部分則是利用合成出之STC-x,將其應用在吸附銀金屬離子,並利用熱還原法將金屬離子還原成金屬奈米粒子。在形成金屬奈米粒子的過程中因受到孔洞大小的空間限制及羧酸官能基的影響, 可以有效地將金屬顆粒尺寸最小控制在2-3 nm左右。並將其應用在還原4-Nitrophenol之催化反應。
摘要(英) Mesoporous silicas SBA-15 functionalized with various contents of carboxylic acid groups were successfully synthesized via co-condensation of Tetraethyl orthosilicate (TEOS) and Carboxyethylsilanetriol sodium salt (CES) templated with a triblock polymer P123 at low HCl concentrations. All these materials have been characterized by powder X-ray diffraction (XRD), nitrogen sorption measurements, solid-state 13C and 29Si MAS NMR spectroscopy, thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and transmission electron
microscopy (TEM).
In the first project, the prepared mesoporous STC-x materials have been utilized as suitable adsorbent for methylene blue and malachite green. The adsorption process was carefully studied with varies systematic parameters, including the loading amount of CES, the quantity of dye, pH of adsorption system. The isotherm models and kinetic models were analyzed to describe the adsorption behavior of STC-x materials. As comparison, the adsorption capacity was also studied for methylene blue and malachite green. It shows that the adsorption capacity of STC-x for methylene blue is better than that of malachite green.
The aim of the second project was to prepare Ag nanoparticles within the uniform pore channels of STC-x. TEM images showed uniformly distributed nanoparticles inside the pore channels of STC-x. Synthesized Ag nanoparticles incorporated in STC-x were used as a good catalyst for the reduction of
4-nitrophenol to 4-aminophenol.
關鍵字(中) ★ 中孔洞
★ 染料
★ 奈米金屬
★ 羧酸官能基
關鍵字(英) ★ mesoporous
★ dyes
★ nanoparticles
★ Carboxylic acid groups
論文目次 中文摘要 i
Abstract ii
謝誌 iii
目錄 iv
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1中孔洞分子篩材料簡介 1
1-2界面活性劑簡介 3
1-2-1界面活性劑結構與種類 4
1-2-2微胞的形成與結構 5
1-2-3界面活性劑與矽氧化物的交互作用力 7
1-2-4共聚高分子 (Block copolymer) 11
1-3表面修飾官能基之中孔洞材料 13
1-3-1中孔洞材料表面之官能基修飾方法 13
1-3-2具羧酸官能基中孔洞材料之發展 16
1-4中孔洞材料之吸附發展及應用 20
1-4-1中孔洞材料吸附染料之發展應用 20
1-4-2中孔洞材料吸附金屬之發展應用 26
1-4-3金屬奈米顆粒對4-Nitrotrophenol催化還原反應之簡介 32
1-5研究動機與目的 42
第二章 實驗部分 43
2-1實驗藥品 43
2-2實驗步驟 44
2-2-1合成具羧酸官能基之SBA-15 (STC-x) 44
2-2-2以硫酸溶液裂解孔洞中的模板 44
2-2-3染料檢量線配置 44
2-2-4利用STC-x在不同濃度吸附染料實驗 45
2-2-5 STC-x在不同時間吸附染料實驗 45
2-2-6 STC-x對不同染料之吸附實驗 46
2-2-7 STC-x在不同pH值下吸附亞甲基藍實驗 46
2-2-8 STC-x對吸附亞甲基藍之重複使用性 47
2-2-9利用STC-x吸附銀金屬製備奈米銀金屬顆粒 47
2-2-10利用STC-x-Ag-y對4-Nitrophenol進行催化還原反應 48
2-2-11 STC-x-Ag-y催化還原反應的重複使用性 48
2-3實驗設備 49
2-3-1實驗合成設備 49
2-3-2實驗鑑定儀器 49
2-4鑑定儀器之原理 51
2-4-1 X射線粉末繞射 (Powder X-Ray Diffractometer) 51
2-4-2氮氣吸脫附等溫曲線、表面積與孔洞特性鑑定 52
2-4-3傅立葉紅外線吸收光譜 (Fourier Transform Infrared Spectroscopy; FTIR) 55
2-4-4紫外光-可見光光譜 (UV/Vis Absorption Spectrocopy) 55
2-4-5熱重分析儀 (Thermogravimetric Analyzer) 57
2-4-6穿透式電子顯微鏡 (Transmission Electron Microscope; TEM) 58
2-4-7低真空掃描式電子顯微鏡 (Scanning Electron Microscope; SEM) 59
2-4-8固態核磁共振 (Solid State NMR) 60
2-4-9感應耦合電漿原子發射光譜分析儀 (Inductively-Coupled Plasma Atomic Emission Spectroscopy ; ICP-AES) 67
第三章 結果與討論 68
3-1合成不同矽源比例的 STC-x 68
3-1-1 XRD繞射圖譜 68
3-1-2等溫氮氣吸脫附 70
3-1-3 FT-IR紅外線光譜 73
3-1-4 13C CP/MAS NMR 75
3-1-5 29Si MAS NMR 76
3-1-6熱重分析 78
3-1-7 TEM影像 80
3-1-8 SEM影像 81
3-1-9表面電位 82
3-2 STC-x吸附染料吸附實驗 83
3-2-1染料檢量線 83
3-2-2 STC-x在不同初始濃度下對染料吸附之影響 84
3-2-3 STC-x在不同時間下對染料吸附之影響 86
3-2-4等溫吸附模式 88
3-2-5動力學吸附探討 93
3-2-6 STC-x 對不同染料之吸附比較 98
3-2-7 STC-x在不同pH值下對亞甲基藍吸附之影響 100
3-2-8 STC-x 對亞甲基藍之重複吸附性 101
3-3利用STC-x吸附銀金屬 102
3-3-1 STC-x-Ag-y之XRD結果 102
3-3-2 STC-x-Ag-y之TEM結果 106
3-3-3 STC-x-Ag-y之氮氣等溫吸脫附結果 110
3-3-4 STC-x-Ag-y之FT-IR結果 113
3-3-5 STC-x-Ag-y之ICP-AES結果 114
3-4 STC-x-Ag-y催化還原4-Nitrophenol之應用 115
3-4-1 4-Nitrophenol之催化還原反應 115
3-4-2 STC-x-Ag-y對4-Nitrophenol催化還原反應之結果探討 117
3-4-3動力學及催化速率探討 119
3-4-4 STC-x-Ag-y對4-Nitophenol之重複催化還原性 122
第四章 結論 123
第五章 參考文獻 124
附錄 136









參考文獻 (1) T. Maschmeyer, F. Rey, G. Sankar, J. M. Thomas, Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica, Nature, 1995, 378, 159-162.
(2) I. S. Nielsen, E. Taarning, K. Egeblad, R. Madsen, C. H. Christensen, Direct aerobic oxidation of primary alcohols to methyl esters catalyzed by a heterogeneous gold catalyst, Catal. Lett., 2007, 116, 35-40.
(3) X. Zhung, Y. Wan, C. Feng; Y. Shen, D. Zhao, Highly efficient adsorption of bulky dye molecules in wastewater on ordered mesoporous carbons, Chem. Mater., 2009, 21, 706-716.
(4) C. - H. Huang, K. - P. Chang, H. - D. Ou, Y. - C. Chiang, C. - F. Wang, Adsorption of cationic dyes onto mesoporous silica, Microporous Mesoporous Mater., 2011, 141, 102-109.
(5) J. A. Aguado, J. M. Arsuaga, A. Arencibia, M. Lindo, V. Gascón, Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica, J. Hazard. Mater., 2009, 163, 213-221.
(6) M. Machida, B. Fotoohi, Y. Amamo, T. Ohba, H. Kanoh, L. Mercier, Cadmium(II) adsorption using functional mesoporous silica and activated carbon, J. Hazard Mater., 2012, 221-222, 220-227.
(7) C. - X. Lin, S. - Z. Qiao, C. - Z. Yu, S. Ismadji, G. - Q. Lu, Periodic mesoporous silica and organosilica with controlled morphologiesas carriers for drug release, Microporous Mesoporous Mater., 2009, 117, 213-219.
(8) S.M. Solberg, C. C. Landry, Adsorption of DNA into mesoporous Silica, J. Phys. Chem. B, 2006, 110, 15261-15268.
(9) IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem., 1972, 31, 57-57.
(10) J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc., 1992, 114, 10834-10843.
(11) C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359, 710-712.
(12) J. V. Smith, W. J. Dytrych, Nets with channels of unlimited diameter, Nature, 1984, 309, 607-608.
(13) P. B. Moore, J. Shen, An X-ray structural study of cacoxenite, a mineral phosphate, Nature,1983, 306, 356-358.
(14) C. T. Kresge, W. J. Roth, The discovery of mesoporous molecular sieves from the twenty year perspective, Chem. Soc. Rev., 2013, 42, 3663-3670.
(15) D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 1998, 279, 548-552.
(16) G. Du, S. Lim, M. Pinault, C. Wang, F. Fang, L.D. Pfefferle, G. L. Haller, Synthesis, characterization, and catalytic performance of highly dispersed vanadium grafted SBA-15 catalyst, J. Catal., 2008, 253, 74-90.
(17) K. Holmberg, B. Jönsson, B. Kronberg and B. Lindman, Surfactants and polymers in aqueous solution, 2nd edition, Wiley, 2002, 1-562.
(18) J. N. Israelachvili, D. J. Mitchell, B. W. Ninham, Theory of self-assembly of lipid bilayers and vesicles, BBA -Biomembranes, 1977, 470, 185-201.
(19) G. J. d. A. A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chemical strategies to design textured materials:  from microporous and mesoporous oxides to nanonetworks and hierarchical structures, Chem. Rev., 2002, 102, 4093-4138.
(20) F. D. Evans, H. Wennerstrom, The Colloidal Domain, 2nd ed., VHC, New York, 1999, 1-632.‬‬‬
(21) L. Qi, J. Ma, H. Chen, Z. Zhao, Synthesis and characterization of mixed CdS-ZnS nanoparticles in reverse micelles, Colloids Surf., A Physicochem. Eng. Asp., 1996, 111, 195-202.
(22) T. A. Fayed, M. H. Shaaban, M. N. El-Nahass, F. M. Hassan, Hybrid organic-inorganic mesoporous silicates as optical nanosensor for toxic metals detection, Int. J. Chem. Appl. Bio. Sci., 2014, 1, 74-94.
(23) Q. Huo, D. I. Margolese, U. Ciesia, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth, G. D. Stucky, Generalized synthesis of periodic
surfactant/inorganic composite materials, Nature, 1994, 368, 317-321.
(24) F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Silica-based mesoporous organic-inorganic hybrid materials, Angew. Chem.,2006, 45, 3216-3251.
(25) R. K. Iler, The Chemistry of Silica, John Wiley: New York, 1979.
(26) C. J. Brinker, Hydrolysis and condensation of silicates: effects on structure, J. Non-Cryst. Solids, 1988, 100, 31-50.
(27) S. Forster, M. Antonietti, Amphiphilic block copolymers in structure
-controlled nanomaterial hybrids, Adv. Mater., 1998, 10, 195-217.
(28) B. Chu, Structure and dynamics of block copolymer colloids, Langmuir,
1995, 11, 414-421.
(29) J. R. Lopes, W. Loh, Investigation of self-assembly and micelle polarity for a wide range of ethylene oxide−propylene oxide−ethylene oxide block copolymers in water, Langmuir, 1998, 14, 750-756.
(30) M. Almgren, W. Brown, S. Hvidt, Self-aggregation and phase behavior of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers in aqueous solution, Colloid. Polym. Sci.,1995, 273, 2-15.
(31) P. Alexandridis, J. F. Holzwarth, T. A. Hatton, Micellization of poly(ethy1ene oxide)-poly(propy1ene oxide)-poly(ethy1ene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association, Macromolecules, 1994, 27, 2414-2425.
(32) P. N. Hurter, T. A. Hatton, Langmuir, 1992, 8, 1291-1299.
(33) D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 1998, 120, 6024-6036.
(34) J. - M. Kim, Y. Sakamoto, Y. - K. Hwang, Y. - U. Kwon, O. Terasaki, S. E. Park, G. D. Stucky, Structural design of mesoporous silica by micelle-packing control using blends of amphiphilic block copolymers, J. Phys. Chem. B, 2002, 106, 2552-2558.
(35) M. Hillmyer, P. M. Lipic, D. A. Hajduk, K. Almdal, F. S. Bates, Self-assembly and polymerization of epoxy resin-amphiphilic block copolymer nanocomposites, J. Am. Chem. Soc.,1997, 119, 2749-2750.
(36) G. J. d. A. A. Soler-Illia, E. L. Crepaldi, D. Grosso, C. Sanchez, Block copolymer-templated mesoporous oxides, Curr. Opin. Colloid Interface Sci., 2003, 8, 109-126.
(37) F. Kleitz, S. H. Choi, R. Ryoo, Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes, Chem. Commun., 2003, 2136-2137.
(38) Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stucky, H. J. Shin, R. Ryoo, Direct imaging of the pores and cages of three-dimensional mesoporous materials, Nature, 2000, 408, 449-453.
(39) F. Kleitz, D. Liu, G. M. Anilkumar, I. S. Park, L. A. Solovyov, A. N. Shmakov, R. Ryoo, Large Cage Face-Centered-Cubic Fm3m Mesoporous Silica:  Synthesis and Structure, J. Phys. Chem. B, 2003, 107, 14296-14300.
(40) F. Kleitz, L. A. Solovyov, G. M. Anilkumar, S. H. Choi, R. Ryoo, Transformation of highly ordered large pore silica mesophases (Fm3m, Im3m and p6mm) in a ternary triblock copolymer–butanol–water system, Chem. Commun., 2004, 1536-1537.
(41) C. Yu, Y. Yu, D. Zhao, Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO–PBO–PEO copolymer, Chem. Commun., 2000, 575-576.
(42) J. R. Matos, M. Kruk, L. P. Mercuri, M. Jaroniec, L. Zhao, T. Kamiyama, O. Terasaki, T. J. Pinnavaia, Y. Liu, Ordered mesoporous silica with large cage-like pores:  structural identification and pore connectivity design by controlling the synthesis temperature and time, J. Am. Chem. Soc., 2003, 125, 821-829.
(43) A. Steel, S.W. Carr, M. W. Anderson, 29Si solid-state NMR study of mesoporous M41S materials, Chem. Mater., 1995, 7, 1829-1832.
(44) M. - H. Kim, C. F. Blangord, A. Stein, Synthesis of ordered microporous silicates with organosulfur surface groups and their applications as solid acid catalysts, Chem. Mater., 1998, 10, 467-470.
(45) C. Lei, Y. Shin, J. Liu, E. J. Ackerman, Entrapping enzyme in a functionalized nanoporous support, J. Am. Chem. Soc., 2002, 124, 11242-11243.
(46) N. Liu, R. A. Assink, C. J. Brinker, Synthesis and characterization of highly ordered mesoporous thin films with -COOH terminated pore surfaces, Chem. Commun., 2003, 370-371.
(47) K. - Y. Ho, G. McKay, K. - L.Yeung, Selective adsorbents from ordered mesoporous silica, Langmuir, 2003, 19, 3019-3024.
(48) C. - M. Yang, B. Zibrowius, F. Schüth, A novel synthetic route for negatively charged ordered mesoporous silica, Chem. Commun. 2003, 1772-1773.
(49) C. - M. Yang, B. Zibrowius, F. Schüth, Formation of cyanide
-functionalized SBA-15 and its transformation to carboxylate
-functionalized SBA-15, Phys. Chem. Chem. Phys., 2004, 6, 2461-2467.
(50) J. M. Rosenholm, T. Czuryszkiewicz, F. Kleitz, J. B. Rosenholm, M. Linden, On the nature of the Brønsted acidic groups on native and functionalized mesoporous siliceous SBA-15 as studied by benzylamine adsorption from solution, Langmuir, 2007, 23, 4315-4323.
(51) L. Han, Y. Sakamoto, O. Terasaki, Y. Li; S. Che, Synthesis of carboxylic group functionalized mesoporous silicas (CFMSs) with various structures, J. Mater. Chem., 2007, 17, 1216-1221.
(52) C. - T. Tsai, Y. - C. Pan, C. - C. Ting, S. Vetrivel, A. - S. Chiang, G. - T. Fey, H. - M. Kao, A simple one-pot route to mesoporous silicas SBA-15 functionalized with exceptionally high loadings of pendant carboxylic acid groups, Chem. Commun., 2009, 5018-5020.
(53) C. - S. Chen, C. - C. Chen, C. - T. Chen, H. - M. Kao, Synthesis of Cu nanoparticles in mesoporous silica SBA-15 functionalized with carboxylic acid groups, Chem. Commun., 2011, 47, 2288-2290.
(54) H. - M. Kao, C. - H. Chung, D. Saikia, S. - H. Liao, P. - Y. Chao, Y. - H. Chen, K. - C. Wu, Highly carboxylic-acid-functionalized ethane-bridged periodic mesoporous organosilicas : synthesis, characterization, and adsorption properties, Chem. Asian J., 2012, 7, 2111-2117.
(55) H. - Y. Wu, F. - K. Shieh, H. - M. Kao, Y. - W. Chen, J. R. Deka, S. - H. Liao, K. - C. Wu, Synthesis bifunctionalization, and remarkable adsorption performance of benzene-bridged periodic mesoporous organosilicas functionalized with high loadings of carboxylic acids, Chem. Eur. J., 2013, 19, 6358-6367.
(56) W. - C. Chang, J. R. Deka, H. - Y. Wu, F. - K. Shieh, S. - Y. Huang, H. - M. Kao, Synthesis and characterization of large pore cubic mesoporous silicas functionalized with high contents of carboxylic acid groups and their use as adsorbents, Appl. Catal. B: Environ., 2013, 142, 817-827.
(57) J. R. Deka, Y. - H. Lin, H. - M. Kao, Ordered cubic mesoporous silica KIT-5 functionalized with carboxylic acid groups for dye removal, RSC Adv., 2014, 4, 49061-49069.
(58) I.A. Rahman , B. Saad, S. Shaidan, E.S. S. Rizal, Adsorption characteristics of malachite green on activated carbon derived from rice husks produced by chemical–thermal process, Biores. Tech.,2005, 96, 1578-1583.
(59) R. Malik, D.S. Ramteke, S.R. Wate, Adsorption of malachite green on groundnut shell waste based powdered activated carbon, Waste Management, 2007, 27, 1129-1138.
(60) X. Zhuang, Y. Wan, C. Feng, Y. Shen, D. Zhao, Highly efficient adsorption of bulky dye molecules in wastewater on ordered mesoporous carbons, Chem. Mater., 2009, 21, 706-716.
(61) T. Santhi, S. Manonmani, T. Smitha, Removal of malachite green from aqueous solution by activated carbon prepared from the epicarp of Ricinus communis by adsorption, J. Hazard. Mater., 2010, 179, 178-186.
(62) P. Bradder, S. K. Ling, S. Wang, S. Liu, Dye Adsorption on Layered Graphite Oxide, J. Chem. Eng. Data, 2011, 56, 138-141.
(63) R. Xu, M. Jia, Y. Zhang, F. Li, Sorption of malachite green on vinyl-modified mesoporous poly(acrylic acid)/SiO2 composite nanofiber membranes, Microporous Mesoporous Mater., 2012, 149, 111-118.
(64) M. S. Derakhshan, O. Moradi, The study of thermodynamics and kinetics methyl orange and malachite green by SWCNTs, SWCNT-COOH and SWCNT-NH2 as adsorbents from aqueous solution, J. Ind. Eng. Chem., 2014, 20, 3186-3194.
(65) C. - M. Yang, P. - H. Liu, Y. - F. Ho, C. - Y. Chiu, K. - J. Chao, Highly dispersed metal nanoparticles in functionalized SBA-15, Chem. Mater., 2003, 15, 275-280.
(66) X. - G. Zhao, J. - L. Shi, B. Hu, L. - X. Zhang, Z. - L. Hua, In situ formation of silver nanoparticles inside pore channels of ordered mesoporous silica, Mater. Lett. 2004, 58, 2152-2156.
(67) Y. Zhao, Y. Qi, Y. Wei, Y. Zhang, S. Zhang, Y. Yang, Z. Liu , Incorporation of Ag nanostructures into channels of nitrided mesoporous silica, Microporous Mesoporous Mater., 2008, 111, 300-306.
(68) J. - K. Shon, S. - S. Kong, J. - M. Kim, C. - H. Ko, M. - Jin, Y. - Y. Lee, S. - H. Hwang, J. - A. Yoon, J. - N. Kim, Facile synthesis of highly ordered mesoporous silver using cubic mesoporous silica template with controlled surface hydrophobicity, Chem. Commun., 2009, 650-652.
(69) Y. Hao, Y. Chong, S. Li, H. Yang, Controlled synthesis of Au Nanoparticles in the nanocages of SBA-16: improved activity and enhanced recyclability for the oxidative esterification of alcohols, J. Phys. Chem. C, 2012, 116, 6512-6519.
(70) J. R. Deka, H. - M. Kao, S. - Y. Huang, W. - C. Chang, C. - C. Ting, P. C. Rath, C. - S. Chen, Ethane-bridged periodic mesoporous organosilicas functionalized with high loadings of carboxylic acid groups: synthesis, bifunctionalization, and fabrication of metal nanoparticles, Chem. Eur. J., 2014, 20, 894-903.
(71) S. Zhang, W. Sun, L. Xu, X. Zheng, X. Chu, J. Tian, N. Wu, Y. Fan, Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, in pseudomonas sp. 1-7, BMC Microbiol. 2012, 12, 27-37.
(72) Y. Chi, J. Tu, M. Wang, X. Li, Z. Zhao, One-pot synthesis of ordered mesoporous silver nanoparticle/carbon composites for catalytic reduction of 4-nitrophenol, J. Colloid. Interf. Sci., 2014, 423, 54-59.
(73) Z. D. Pozun, S. E. Rodenbusch, E. Keller, K. Tran, W. Tang, K. J. Stevenson, G. Henkelman, A systematic investigation of p-nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles, J. Phys. Chem. C, 2013, 117, 7598-7604.
(74) P. Liu, M. Zhao, Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP), Appl. Surf. Sci., 2009, 255, 3989-3993.
(75) B. Naik, S. Hazra, V. S. Prasad, N. N. Ghosh, Synthesis of Ag nanoparticles within the pores of SBA15: An efficient catalyst for reduction of 4-nitrophenol, Catal. Commun., 2011, 12, 1104-1108.
(76) P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, Y. Liu, In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun
carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol,
Nanoscale, 2011, 3, 3357-3363.
(77) S. Xiao, W. Xu, H. Ma, X. Fang, Size-tunable Ag nanoparticles immobilized in electrospun nanofibers: synthesis, characterization, and application for catalytic reduction of 4-nitrophenol, RSC Adv., 2012, 2, 319-327.
(78) L. Ai, J. Jiang, Catalytic reduction of 4-nitrophenol by silver nanoparticles stabilized on environmentally benign macroscopic biopolymer hydrogel, Bioresour. Technol., 2013, 132, 374-377.
(79) X. - H. Zhao, Q. Li, X. M. Ma, Z. Xiong, F. Quan, Y. - Z. Xia, Alginate fibers embedded with silver nanoparticles as efficient catalysts for reduction of 4-nitrophenol, RSC Adv., 2015, 5, 49534-49540.
(80) C. - M. Yang, B. Zibrowius, W. Schmidt, F. Schüth, Stepwise removal of the copolymer template from mesopores and micropores in SBA-15, Chem. Mater., 2004, 16, 2918-2925.
(81) http://www.nsrrc.org.tw/
(82) S. Brunauer, L. S. Deming, W. E. Deming, E. Teller, On a Theory of the van der Waals Adsorption of Gases, J. Am. Chem. Soc., 62. 1940, 62, 1723-1732.
(83) S. J. Gregg, K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd ed., Academic press, New York, 1982.
(84) https://www.spectralproducts.com
(85) http://www.chemicool.com/definition/fourier_transform_infrared_
spectrometer_ftir.htm
(86) http://pharmaxchange.info/press/2011/12/ultraviolet-visible-uv-vis-
spectroscopy-principle/
(87) http://www.pharmatutor.org/articles/thermogravimetry
(88) http://www.nobelprize.org/educational/physics/microscopes/tem/
(89) http://www.photonics.com/EDU/Term.aspx?TermID=6861
(90) 高憲明, 多核固態核磁共振於孔洞材料結構鑑定之應用, 化學, 2004, 62, 285-298.
(91) 潘育麒, 廖家秀, 高憲明, 固態核磁共振技術於孔洞材料之應用, 化學, 2004, 66, 209-219.
(92) 王明光, 王敏昭, 實用儀器分析, 合記圖書出版社, 2003. 277-314
(93) M. - Y. Chang, R. - S. Juang, Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay, J. Colloid Interf. Sci., 2004, 278, 18-25.
(94) D. O′Shannessy, D. Winzor, Interpretation of deviations from pseudo-first
-order kinetic behavior in the characterization of ligand binding by
biosensor technology, J. Anal. Biochem., 1996, 236, 275-283.
(95) Y. - S. Ho, Review of second-order models for adsorption systems, J.
Hazard. Mater., 2006, 136, 681-689.
(96) P. T. Hang, G. W. Brindley, Methylene blue absorption by clay minerals. determination of surface areas and cation exchange capacities (clay-organic
studies XVIII), Clays Clay Miner., 1970, 18, 203-212.
(97) E. Castellini, R. Andreoli, G. Malavasi, A. Pedone, Deflocculant effects on the surface properties of kaolinite investigated through malachite green
adsorption, Colloid Surf. A-Physicochem. Eng. Asp., 2008, 329, 31-37.
(98) I. D. Mall, V. C. Srivastava,N. K. Agarwal, I. M. Mishra, Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses,
Colloid Surf. A-Physicochem. Eng. Asp., 2005, 264, 17-28.
(99) D. Carmona, P. Lalueza, F. Balas, M. Arruebo, J. Santamaría, Mesoporous silica loaded with peracetic acid and silver nanoparticles as a dual-effect, highly efficient bactericidal agent. Microporous Mesoporous Mater., 2012,
161, 84-90.
(100) N. Mnasri, C. Charnay, L. C. De Ménorval, Y. Moussaoui, E. Elaloui, J. Zajac, Silver nanoparticle-containing submicron-in-size mesoporous silica-based systems for iodine entrapment and immobilization from gas phase, Microporous Mesoporous Mater., 2014, 196, 305-313.
(101) M. Vinoba, S. K. Jeong, M. Bhagiyalakshmi, M. Alagar, Electrocatalytic reduction of hydrogen peroxide on silver nanoparticles stabilized by Amine grafted mesoporous SBA-15, Bull. Korean Chem. Soc., 2010, 31, 3663-3674.
(102) A. Gangula, R. Podila, R. M; L. Karanam, C. Janardhana, A. M. Rao,
Catalytic reduction of 4-nitrophenol using biogenic Gold and silver nanoparticles derived from breynia rhamnoides, Lamgmuir, 2011, 27,
15268-15274.
(103) S. Pandey, S.B. Mishra, Catalytic reduction of p-nitrophenol by using platinum nanoparticlesstabilised by guar gum, Carbohydr. Polym., 2014,
113, 525-531.
(104) S. Tang, S. Vongehr, X. Meng, Carbon spheres with controllable silver
nanoparticle doping, J. Phys. Chem. C., 2009, 114, 977-982.
(105) Y. Chi, Q. Yuan, Y. Li, J. Tu, L. Zhao, N. Li, X. Li, Synthesis of Fe3O4@SiO2-Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of
4-nitrophenol, J. Colloid. Interf. Sci., 2012, 383, 96-102.
(106) M. H. Rashid, T. K. Mandal, Synthesis and catalytic application of nanostructured silver dendrites, J. Phys. Chem. C., 2007, 111,
16750-16760.
(107) Z. Dong, X. Le, X. Li, W. Zhang, C. Dong, J. Ma, Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline,
Appl. Catal. B Environ., 2014, 158-159, 129-135.
(108) N. Sahiner, H. Ozay, O. Ozay, N. Aktas, New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols, Appl. Catal. A: Gen., 2010, 385,
201-207.
(109) N. Sahiner, H. Ozay, O. Ozay, N. Aktas, A soft hydrogel reactor for cobalt nanoparticle preparation and use in the reduction of nitrophenols, Appl.
Catal. B: Environ., 2010, 101, 137-143.
(110) N. Sahiner, O. Ozay, Enhanced catalytic activity in the reduction of 4-nitrophenol and 2-nitrophenol by p(AMPS)-Cu(0) hydrogel composite
materials, Curr. Nanosci., 2012, 8, 367-374.






指導教授 高憲明(Hsien-ming Kao) 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明