博碩士論文 102223044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.16.83.150
姓名 吳征戰(Cheng-Chan Wu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 探討不同官能基在金屬有機骨架材料上的配位基對UiO-66在硝酸水相合成的影響
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 金屬有機骨架材料(Metal Organic Frameworks, MOFs)主要由金屬原子(或者團簇)與有機分子配位形成聚合物,這類聚合物具有孔洞性質,目前此類材料主要應用於儲存氣體、分離混合氣體、催化反應劑和藥物載體;而合成大部分金屬骨架材料合成方法為水熱法(Hydrothermal)或熱溶劑法(Solvothermal),其最主要差別即反應中添加水或者有機溶劑,尤其熱溶劑法所使用的溶劑多為有毒物質,例如:二甲基甲醯胺(Dimethylformamide;DMF),所以本篇論文將介紹使用水作為溶劑合成UiO-66;其為金屬有機骨架材料一種,其組成的架構為鋯(Zirconium)或鉿(Hafnium)團簇與十二有機配位體形成的架構,而有機配位分子是對苯二甲酸(Terephthalic acid)。這類本篇所使用的方法為使用對苯二甲酸衍生化的對苯二甲酸二甲酯(Dimethyl terephthalate)在硝酸底下與四氯化鋯(Zirconium chloride)高溫微波反應(140 °C;10 分鐘)後即可合成出材料。但若以對苯二甲酸作為起始物,且使用相同條件卻是得到非結晶性(Amorphous)的材料,作者對於此差異現象極為感興趣,故以本篇論文做些假設並對此做一系列的實驗作為探討。
摘要(英) Metal organic frameworks (MOFs), which are three-dimensional porous materials consisting of metal ions and organic linkers. Because of their high surface-area porosity, MOFs have been studied for use in gas storage/separation/purification, catalysis and drug carrier. Most synthesis mythologies are hydrothermal or solvothermal, which are different from adding water or organic solvent in reaction. Especially, solvothermal is using organic solvents which most of them are toxic and non-eco-friendly such as dimethylformamide. So in this study, we are going to introduce how to synthesis UiO-66 in water-acid phase. UiO-66 is one of MOFs which reticular structure is consist of zirconium or hafnium clusters and they coordinate with twelve organic linker molecules. The coordinate linkers are terephthalic acid or similar coordinate linkers, such as fumaric acid, could get iso-reticular structure. In this work, we used dimethyl terephthalic acid, derivatization of terephthalic acid, react with zirconium chloride under high temperature and microwave radiation condition (140 °C; 10 minutes). However, amorphous crystalline material was obtained by terephthalic acid as linkers in the same condition. So we interested in the distinct phenomenon and resorted to a hypothesis and further study with a series experiments.
關鍵字(中) ★ 金屬有機骨架材料
★ 水相合成
★ 官能基化配體
關鍵字(英) ★ Metal-Organic Framework
★ Water-base synthesis
★ UiO-66
論文目次 中文摘要 I
Abstract II
目錄 III
圖目錄 IV
表目錄 VI
第一章 緒論 1
1-1 金屬有機骨架材料(Metal-Organic Framework) 1
1-2 鋯金屬有機骨架材料(Zirconium-Organic Framework) 2
1-3 UiO-66焦點(UiO-66 Review) 4
1-4 實驗動機(Experiment Motivation) 6
第二章 實驗部分 9
2-1 實驗藥品 9
2-2 實驗儀器介紹 10
2-2-1 微波輔助合成儀(Microwave-Assisted Instrument) 10
2-2-2 X射線粉末繞射儀(Powder X-ray Diffraction) 12
2-2-3 熱重分析儀(Thermo-gravimetric analyzer; TGA) 14
2-2-4 等溫氮氣吸脫附儀(Nitrogen ad/desorption isotherms) 15
2-2-5 傅立葉轉換紅外線吸收光譜儀(FT-IR) 18
2-2-6 固態核磁共振儀(Solid Nuclear Magnetic Resonance;SNMR) 19
2-3 實驗步驟 21
2-3-1 熱溶劑法合成UiO-66 21
2-3-2 硝酸溶液下微波輔助合成UiO-66 21
2-3-3 硝酸溶液下微波輔助合成UiO-66-X 22
第三章 結果與討論 24
3-1 微波輔助合成UiO-66 24
3-2 詳細結構鑑定硝酸微波輔助合成的UiO-66 27
3-3 硝酸微波合成中加入添加劑(Acetic acid) 31
3-3 探討合成機制 34
3-4 不同官能基在配位鍵結強度的計算 43
3-5 結論 47
參考文獻及附錄 48
參考文獻 1. Zhou, H.-C.; Long, J. R.; Yaghi, O. M., Introduction to Metal–Organic Frameworks. Chem. Rev. 2012, 112 (2), 673-674.
2. Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O′Keeffe, M.; Suh, M. P.; Leiden, J. R., Terminology of metal–organic frameworks and coordination polymers. Pure Appl. Chem. 2013, 85 (8), 1715-1724.
3. Liu, X.; Demir, N. K.; Wu, Z.; Li, K., Highly Water-Stable Zirconium Metal–Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination. J. Am. Chem. Soc. 2015, 137 (22), 6999-7002.
4. Nguyen, H. G. T.; Schweitzer, N. M.; Chang, C.-Y.; Drake, T. L.; So, M. C.; Stair, P. C.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T., Vanadium-Node-Functionalized UiO-66: A Thermally Stable MOF-Supported Catalyst for the Gas-Phase Oxidative Dehydrogenation of Cyclohexene. ACS Catalysis 2014, 4 (8), 2496-2500.
5. Bétard, A.; Fischer, R. A., Metal–Organic Framework Thin Films: From Fundamentals to Applications. Chem. Rev. 2012, 112 (2), 1055-1083.
6. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev. 2012, 112 (2), 1105-1125.
7. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C., Metal–Organic Frameworks in Biomedicine. Chem. Rev. 2012, 112 (2), 1232-1268.
8. Yoon, M.; Suh, K.; Natarajan, S.; Kim, K., Proton Conduction in Metal–Organic Frameworks and Related Modularly Built Porous Solids. Angew. Chem. Int. Ed. 2013, 52 (10), 2688-2700.
9. Li, S.-L.; Xu, Q., Metal-organic frameworks as platforms for clean energy. Energy & Environmental Science 2013, 6 (6), 1656-1683.
10. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2012, 112 (2), 933-969.
11. (a) Feng, D.; Gu, Z.-Y.; Chen, Y.-P.; Park, J.; Wei, Z.; Sun, Y.; Bosch, M.; Yuan, S.; Zhou, H.-C., A Highly Stable Porphyrinic Zirconium Metal–Organic Framework with shp-a Topology. J. Am. Chem. Soc. 2014, 136 (51), 17714-17717;(b) Devic, T.; Serre, C., High valence 3p and transition metal based MOFs. Chem. Soc. Rev. 2014, 43 (16), 6097-6115.
12. Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P., Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22 (24), 6632-6640.
13. Shearer, G. C.; Chavan, S.; Ethiraj, J.; Vitillo, J. G.; Svelle, S.; Olsbye, U.; Lamberti, C.; Bordiga, S.; Lillerud, K. P., Tuned to Perfection: Ironing Out the Defects in Metal–Organic Framework UiO-66. Chem. Mater. 2014, 26 (14), 4068-4071.
14. Gutov, O. V.; Bury, W.; Gomez-Gualdron, D. A.; Krungleviciute, V.; Fairen-Jimenez, D.; Mondloch, J. E.; Sarjeant, A. A.; Al-Juaid, S. S.; Snurr, R. Q.; Hupp, J. T.; Yildirim, T.; Farha, O. K., Water-Stable Zirconium-Based Metal–Organic Framework Material with High-Surface Area and Gas-Storage Capacities. Chemistry – A European Journal 2014, 20 (39), 12389-12393.
15. Feng, D.; Gu, Z.-Y.; Li, J.-R.; Jiang, H.-L.; Wei, Z.; Zhou, H.-C., Zirconium-Metalloporphyrin PCN-222: Mesoporous Metal–Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts. Angew. Chem. Int. Ed. 2012, 51 (41), 10307-10310.
16. (a) Ragon, F.; Campo, B.; Yang, Q.; Martineau, C.; Wiersum, A. D.; Lago, A.; Guillerm, V.; Hemsley, C.; Eubank, J. F.; Vishnuvarthan, M.; Taulelle, F.; Horcajada, P.; Vimont, A.; Llewellyn, P. L.; Daturi, M.; Devautour-Vinot, S.; Maurin, G.; Serre, C.; Devic, T.; Clet, G., Acid-functionalized UiO-66(Zr) MOFs and their evolution after intra-framework cross-linking: structural features and sorption properties. Journal of Materials Chemistry A 2015, 3 (7), 3294-3309;(b) Hu, Z.; Peng, Y.; Kang, Z.; Qian, Y.; Zhao, D., A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-Type MOFs. Inorg. Chem. 2015, 54 (10), 4862-4868;(c) Reinsch, H.; Bueken, B.; Vermoortele, F.; Stassen, I.; Lieb, A.; Lillerud, K.-P.; De Vos, D., Green synthesis of zirconium-MOFs. CrystEngComm 2015, 17 (22), 4070-4074.
17. Katz, M. J.; Brown, Z. J.; Colon, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K., A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem. Commun. 2013, 49 (82), 9449-9451.
18. Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P., Modulated Synthesis of Zr-Based Metal–Organic Frameworks: From Nano to Single Crystals. Chemistry – A European Journal 2011, 17 (24), 6643-6651.
19. Lu, G.; Cui, C.; Zhang, W.; Liu, Y.; Huo, F., Synthesis and Self-Assembly of Monodispersed Metal-Organic Framework Microcrystals. Chemistry – An Asian Journal 2013, 8 (1), 69-72.
20. Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W., Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal–Organic Framework UiO-66 and Their Important Effects on Gas Adsorption. J. Am. Chem. Soc. 2013, 135 (28), 10525-10532.
21. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P., A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130 (42), 13850-13851.
22. (a) Cliffe, M. J.; Wan, W.; Zou, X.; Chater, P. A.; Kleppe, A. K.; Tucker, M. G.; Wilhelm, H.; Funnell, N. P.; Coudert, F.-X.; Goodwin, A. L., Correlated defect nanoregions in a metal–organic framework. Nat Commun 2014, 5;(b) Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M. H.; Jakobsen, S.; Lillerud, K. P.; Lamberti, C., Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chem. Mater. 2011, 23 (7), 1700-1718.
23. Øien, S.; Wragg, D.; Reinsch, H.; Svelle, S.; Bordiga, S.; Lamberti, C.; Lillerud, K. P., Detailed Structure Analysis of Atomic Positions and Defects in Zirconium Metal–Organic Frameworks. Crystal Growth & Design 2014, 14 (11), 5370-5372.
24. Redlich, C. A.; Beckett, W. S.; Sparer, J.; Barwick, K. W.; Riely, C. A.; Miller, H.; Sigal, S. L.; Shalat, S. L.; Cullen, M. R., Liver Disease Associated with Occupational Exposure to the Solvent Dimethylformamide. Annals of Internal Medicine 1988, 108 (5), 680-686.
25. Shieh, F.-K.; Wang, S.-C.; Leo, S.-Y.; Wu, K. C. W., Water-Based Synthesis of Zeolitic Imidazolate Framework-90 (ZIF-90) with a Controllable Particle Size. Chemistry – A European Journal 2013, 19 (34), 11139-11142.
26. (a) Haouas, M.; Volkringer, C.; Loiseau, T.; Férey, G.; Taulelle, F., In Situ NMR, Ex Situ XRD and SEM Study of the Hydrothermal Crystallization of Nanoporous Aluminum Trimesates MIL-96, MIL-100, and MIL-110. Chem. Mater. 2012, 24 (13), 2462-2471;(b) Volkringer, C.; Popov, D.; Loiseau, T.; Férey, G.; Burghammer, M.; Riekel, C.; Haouas, M.; Taulelle, F., Synthesis, Single-Crystal X-ray Microdiffraction, and NMR Characterizations of the Giant Pore Metal-Organic Framework Aluminum Trimesate MIL-100. Chem. Mater. 2009, 21 (24), 5695-5697;(c) Loiseau, T.; Lecroq, L.; Volkringer, C.; Marrot, J.; Férey, G.; Haouas, M.; Taulelle, F.; Bourrelly, S.; Llewellyn, P. L.; Latroche, M., MIL-96, a Porous Aluminum Trimesate 3D Structure Constructed from a Hexagonal Network of 18-Membered Rings and μ3-Oxo-Centered Trinuclear Units. J. Am. Chem. Soc. 2006, 128 (31), 10223-10230;(d) Khan, N. A.; Lee, J. S.; Jeon, J.; Jun, C.-H.; Jhung, S. H., Phase-selective synthesis and phase-conversion of porous aluminum-benzenetricarboxylates with microwave irradiation. Microporous Mesoporous Mater. 2012, 152, 235-239.
27. (a) Li, Y.; Liu, Y.; Gao, W.; Zhang, L.; Liu, W.; Lu, J.; Wang, Z.; Deng, Y.-J., Microwave-assisted synthesis of UIO-66 and its adsorption performance towards dyes. CrystEngComm 2014, 16 (30), 7037-7042;(b) Taddei, M.; Dau, P. V.; Cohen, S. M.; Ranocchiari, M.; van Bokhoven, J. A.; Costantino, F.; Sabatini, S.; Vivani, R., Efficient microwave assisted synthesis of metal-organic framework UiO-66: optimization and scale up. Dalton Transactions 2015, 44 (31), 14019-14026.
28. Kappe, C. O.; Stadler, A., Microwave Theory. In Microwaves in Organic and Medicinal Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA: 2006; pp 9-28.
29. (a) Mingos, D. M. P.; Baghurst, D. R., Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem. Soc. Rev. 1991, 20 (1), 1-47;(b) Gabriel, C.; Gabriel, S.; H. Grant, E.; H. Grant, E.; S. J. Halstead, B.; Michael P. Mingos, D., Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev. 1998, 27 (3), 213-224.
30. Guillerm, V.; Gross, S.; Serre, C.; Devic, T.; Bauer, M.; Ferey, G., A zirconium methacrylate oxocluster as precursor for the low-temperature synthesis of porous zirconium(iv) dicarboxylates. Chem. Commun. 2010, 46 (5), 767-769.
31. Vermoortele, F.; Bueken, B.; Le Bars, G.; Van de Voorde, B.; Vandichel, M.; Houthoofd, K.; Vimont, A.; Daturi, M.; Waroquier, M.; Van Speybroeck, V.; Kirschhock, C.; De Vos, D. E., Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). J. Am. Chem. Soc. 2013, 135 (31), 11465-11468.
32. Sing, K. S. W., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). In Pure Appl. Chem., 1985; Vol. 57, p 603.
33. Brunauer, S.; Emmett, P. H.; Teller, E., Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60 (2), 309-319.
34. Langmuir, I., THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND LIQUIDS. PART I. SOLIDS. J. Am. Chem. Soc. 1916, 38 (11), 2221-2295.
35. Andrew, E. R.; Bradbury, A.; Eades, R. G., Nuclear Magnetic Resonance Spectra from a Crystal rotated at High Speed. Nature 1958, 182 (4650), 1659-1659.
36. Han, Y.; Liu, M.; Li, K.; Zuo, Y.; Wei, Y.; Xu, S.; Zhang, G.; Song, C.; Zhang, Z.; Guo, X., Facile synthesis of morphology and size-controlled zirconium metal-organic framework UiO-66: the role of hydrofluoric acid in crystallization. CrystEngComm 2015, 17 (33), 6434-6440.
37. (a) Fei, H.; Pullen, S.; Wagner, A.; Ott, S.; Cohen, S. M., Functionalization of robust Zr(iv)-based metal-organic framework films via a postsynthetic ligand exchange. Chem. Commun. 2015, 51 (1), 66-69;(b) Fei, H.; Cahill, J. F.; Prather, K. A.; Cohen, S. M., Tandem Postsynthetic Metal Ion and Ligand Exchange in Zeolitic Imidazolate Frameworks. Inorg. Chem. 2013, 52 (7), 4011-4016;(c) Kim, M.; Cahill, J. F.; Fei, H.; Prather, K. A.; Cohen, S. M., Postsynthetic Ligand and Cation Exchange in Robust Metal–Organic Frameworks. J. Am. Chem. Soc. 2012, 134 (43), 18082-18088;(d) Kim, M.; Cahill, J. F.; Su, Y.; Prather, K. A.; Cohen, S. M., Postsynthetic ligand exchange as a route to functionalization of ′inert′ metal-organic frameworks. Chemical Science 2012, 3 (1), 126-130.
38. (a) Bellarosa, L.; Brozek, C. K.; García-Melchor, M.; Dincă, M.; López, N., When the Solvent Locks the Cage: Theoretical Insight into the Transmetalation of MOF-5 Lattices and Its Kinetic Limitations. Chem. Mater. 2015, 27 (9), 3422-3429;(b) Brozek, C. K.; Dinca, M., Cation exchange at the secondary building units of metal-organic frameworks. Chem. Soc. Rev. 2014, 43 (16), 5456-5467.
39. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O′Keeffe, M.; Yaghi, O. M., Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science 2002, 295 (5554), 469-472.
40. Hatakeyama, W.; Sanchez, T. J.; Rowe, M. D.; Serkova, N. J.; Liberatore, M. W.; Boyes, S. G., Synthesis of Gadolinium Nanoscale Metal−Organic Framework with Hydrotropes: Manipulation of Particle Size and Magnetic Resonance Imaging Capability. ACS Applied Materials & Interfaces 2011, 3 (5), 1502-1510.
41. Millange, F.; Guillou, N.; Walton, R. I.; Greneche, J.-M.; Margiolaki, I.; Ferey, G., Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks. Chem. Commun. 2008, (39), 4732-4734.
42. Munn, A. S.; Clarkson, G. J.; Millange, F.; Dumont, Y.; Walton, R. I., M(ii) (M = Mn, Co, Ni) variants of the MIL-53-type structure with pyridine-N-oxide as a co-ligand. CrystEngComm 2013, 15 (45), 9679-9687.
43. Anbia, M.; Sheykhi, S., Synthesis of nanoporous copper terephthalate [MIL-53(Cu)] as a novel methane-storage adsorbent. Journal of Natural Gas Chemistry 2012, 21 (6), 680-684.
44. (a) Serre, C.; Millange, F.; Thouvenot, C.; Noguès, M.; Marsolier, G.; Louër, D.; Férey, G., Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)•{O2C-C6H4-CO2}•{HO2C-C6H4-CO2H}x• H2Oy. J. Am. Chem. Soc. 2002, 124 (45), 13519-13526;(b) Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I., A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science 2005, 309 (5743), 2040-2042.
45. Jakobsen, S.; Gianolio, D.; Wragg, D. S.; Nilsen, M. H.; Emerich, H.; Bordiga, S.; Lamberti, C.; Olsbye, U.; Tilset, M.; Lillerud, K. P., Structural determination of a highly stable metal-organic framework with possible application to interim radioactive waste scavenging: Hf-UiO-66. Physical Review B 2012, 86 (12), 125429.
46. (a) Biswas, S.; Van Der Voort, P., A General Strategy for the Synthesis of Functionalised UiO-66 Frameworks: Characterisation, Stability and CO2 Adsorption Properties. Eur. J. Inorg. Chem. 2013, 2013 (12), 2154-2160;(b) Yang, F.; Huang, H.; Wang, X.; Li, F.; Gong, Y.; Zhong, C.; Li, J.-R., Proton Conductivities in Functionalized UiO-66: Tuned Properties, Thermogravimetry Mass, and Molecular Simulation Analyses. Crystal Growth & Design 2015, 15 (12), 5827-5833.
47. Jayaramulu, K.; Kanoo, P.; George, S. J.; Maji, T. K., Tunable emission from a porous metal-organic framework by employing an excited-state intramolecular proton transfer responsive ligand. Chem. Commun. 2010, 46 (42), 7906-7908.
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2016-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明