博碩士論文 102223065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.94.21.209
姓名 林建佑(Jian-you Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 含3,4-乙烯二氧噻吩輔助配位基之鋨、釕金屬錯合物合成與其在染料敏化太陽能電池的應用
相關論文
★ 應用於染料敏化太陽能電池之釕金屬錯合物合成與其性質探討★ 含共軛配位基之釕錯合物合成與其在染料敏化太陽能電池的應用
★ 新型三吡啶釕錯合物光敏化染料的合成與性質探討★ 釕錯合物敏化太陽能電池元件優化與光伏特性探討
★ 有機共吸附染料的合成與性質探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究針對染料敏化太陽能電池(Dye-Sensitized Solar Cells, DSCs)設計合成兩個新型含3,4-乙烯二氧噻吩輔助配位基(Hexylthio-ethylene-dioxythiophene-bipyridine (HT-EDOT-BP;Ligand-20))之鋨、釕金屬錯合物(代號分別為CYC-33O與CYC-33R),並同步探討比較兩新型光敏化劑與Os-3和Black dye的物理性質以及敏化之電池元件的光伏參數差異,藉此剖析3,4-乙烯二氧噻吩輔助配位基以及不同金屬中心對於錯合物染料特性與其元件效能之關連性。由上述四個染料之交叉比對可得知3,4-乙烯二氧噻吩可有效延長錯合物上配位基的共軛長度與增加其推電子能力,如此一來不僅可有效降低錯合物的MLCT (Metal-to-Ligand Charge Transfer)躍遷能量,也可同時提高此吸收峰的莫爾吸收係數,使兩新型染料的最低能量吸收波長與吸收系數皆優於比對參考品Os-3和Black dye的吸光性質。在AM 1.5G模擬太陽光源照射下,初步結果顯示以CYC-33O和CYC-33R敏化之電池元件的光電轉換效率最高分別為2.29 %以及5.06 % (相同條件下Os-3和Black dye則各別為0.16 %與6.62 %),其中CYC-33O效率高於Os-3,主要可歸功於CYC-33O的輔助配位基HT-EDOT-BP有較好的共軛性與推電子能力,以及其中心鋨金屬的作用,更特別的是CYC-33O敏化之元件的IPCE響應波長範圍可有效涵蓋可見光範圍並拓展至近1100 nm,此寬廣的響應範圍不僅為本研究中比較的四個染料之最,也比大部份應用於染料敏化太陽能電池之鋨與釕金屬錯合物、紫質及有機小分子染料表現更加優異。
摘要(英) Two novel metal complexes, CYC-33O and CYC-33R, both incorporates the hexylthio-ethylene-dioxythiophene-bipyridine (HT-EDOT-BP; Ligand-20) and differs from each other in the metal center (Osimum versus Ruthenium) were synthesized and characterized. In addition to comparing their physical properties with Os-3 and black dye, the application of four dyes in dye-sensitized solar cells (DSCs) was also explored to scrutinize the effects of highly conjugated HT-EDOT-BP ancillary ligand and the Osimum center. It was found the MLCT (Metal-to-Ligand Charge Transfer) transition can be red-shifted and the corresponding molecular absorption coefficient can be enhanced simultaneously once the conjugation length and electron-donating ability of ancillary ligand is reinforced by the hexylthio-ethylene-dioxythiophene units. Under an illumination of AM 1.5G simulated sunlight, the best DSC sample based on CYC-33O and CYC-33R reached respectively 2.29 % and 5.06 % whereas 0.16 % and 6.62 % was obtained for the Os-3 and the Black dye sensitized device. Among four dyes, the IPCE spectra for cells based on CYC-33O cover entirely the visible light region and extend remarkably up to approximate 1100 nm. Such the widest range of spectral response can be attributed to the highly conjugated ancillary ligand in combination with the osmium metal center, and superior to most of the published ruthenium, porphyrin and metal-free organic sensitizers.
關鍵字(中) ★ 染料敏化太陽能電池
★ 釕敏化劑
★ 鋨敏化劑
關鍵字(英) ★ Dye-sensitized solar cells
★ Ruthenium(II) Sensitizers
★ Osmium(II) Sensitizers
論文目次 中文摘要 I
英文摘要 II
謝誌 III
目錄 IV
圖目錄 VIII
表目錄 XI

壹、緒論 1
1-1、前言 1
1-2、光電轉換效率(η (%))的量測 2
1-2-1、IPCE (Incident Photon to current Conversion Efficiency)的量測 4
1-3、太陽能電池的種類 5
1-4、染料敏化太陽能電池(Dye-sensitized solar cells;DSCs)的組成與工作原理 6
1-5、釕錯合物光敏化劑 11
1-6、輔助配位基 14
1-6-1、輔助配位基-引入飽和長烷碳鏈 14
1-6-2、輔助配位基-提高共軛程度 15
1-6-3、輔助配位基-引入多電子原子基團 17
1-7、鋨錯合物光敏化劑簡介 20
1-7-1、鋨錯合物光敏化劑-連三羧基吡啶系統 23
1-7-2、鋨錯合物光敏化劑-引入輔助基團 25
1-8、研究動機 34
貳、實驗部分 36
2-1、實驗藥品 36
2-2、儀器分析與樣品製備 38
2-2-1、核磁共振光譜儀(Bruker 300 MHz & 500 MHz Nuclear Magnetic Resonance Spectrometer NMR) 38
2-2-2、紫外光/可見光/近紅外光吸收光譜儀(HITACHI U-4100 Spectrometer);可量測波長範圍175 ~ 1200 nm 39
2-2-3、分子螢光光光譜(HITACHI F-7000 Fluorescence Spectrophotometer);可量測波長範圍250 ~ 900 nm 40
2-2-4、紅外光吸收光譜儀(Jasco FT/IR-4100 Spectrometer) ;可量測波長範圍400 ~ 4000 nm 44
2-2-5、電化學量測(AutoLab Potentionstat / Galvanostat PGSTAT30)-方波伏安法 45
2-3、合成步驟 47
2-3-1、輔助配位基Ligand-20的合成流程 47
2-3-1-1、EDOT-SH的合成 48
2-3-1-2、TMeSnEDOT-SH的合成 49
2-3-1-3、Ligand-20 的合成 50
2-3-2、錨固配位基Et3tctpy的合成流程 51
2-3-2-1、Et3tpy的合成 52
2-3-2-2、COOH3tpy的合成 53
2-3-2-3、Et3tctpy的合成 54
2-3-3、CYC-33O的合成流程 55
2-3-3-1、(TBA)2OsCl6的合成 57
2-3-3-2、Os(Et3tctpy)Cl3的合成 57
2-3-3-3、CYC-33O (Ester)的合成 58
2-3-3-4、CYC-33O的合成 59
2-3-4、CYC-33R的合成流程 61
2-3-5、Os-3的合成流程 63
2-3-5-1、Os-3的合成 63
2-3-6、DSC元件組裝與性能量測 65
2-3-6-1、太陽光模擬器及光電轉換效率測量(Solar simulator,YSS-50A) 66
2-3-6-2、太陽能電池外部量子效率量測系統 (Incident Photon to current Conversion Efficiency, ENLI Technology Co. Ltd.,EQE-R-3011) 67
參、結果與討論 68
3-1、CYC-33O、CYC-33R和Os-3合成與結構鑑定 68
3-2、CYC-33O、CYC-33R、Os-3和Black dye的吸光性質探討比較 73
3-3、CYC-33O、CYC-33R、Os-3和Black dye的電化學性質和邊界軌域位能探討比較 81
3-4、CYC-33O、CYC-33R、Os-3和Black dye敏化的DSC電池元件性能探討 86
肆、結論 93
伍、參考文獻 94
陸、附錄 99
參考文獻 1. E. Becquerel, Mémoire sur les effets électriques produits sous l′influence des rayons solaires, C. R. Acad. Sci. Paris 1839, 9, 561-567.
2. http://www.californiasolarcenter.org/history-pv.html.
3. http://www.eyesolarlux.com/Solar-simulation-energy.htm.
4. http://www.peccell.com/pdf/PEC-S20_E.pdf.
5. 林明獻, 太陽能技術入門, 全華, 2007, 1.
6. Trend in Photovoltaic Applications. Survey report of selected IEA countries between 1992 and 2013.
7. I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egass, C. DeHart, J. Scharf, B. E. MCandless, R.Noufi, Characterization of 19.9%-efficient CIGS absorbers, National Renewable Energy Laboratory 2008.
8. M. A. Green, Third Generation PhotoVoltaic: Advanced Solar Energy Conversion; Springer-Verlag: Berlin, Heidelberg, 2003.
9. (a) S. Mathew, A. Yella, P. Gao, R. H. Baker, B. F. E. Curchod, N. A. Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nature Chem. 2014, 6, 242-247; (b) M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Solar cell efficiency tables (version 47), Prog. Photovolt: Res. Appl. 2016, 24, 3-11.
10. M. Grätzel, Recent advances in sensitized mesoscopic solar cells, Acc. Chem. Res. 2009, 42, 1788-1798.
11. A. Listorti, C. Creager, P. Sommeling, J. Kroon, E. Palomares, A. Fornelli, B. Breen, P.R.F. Barnes, J.R. Durrant, C. Law, B. O’Regan, The mechanism behind the beneficial effect of light soaking on injection efficiency and photocurrent in dye sensitized solar cells, Energy Environ. Sci. 2011, 4, 3494-3501.
12. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. Grätzel, A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells, J. Phys. Chem. B. 2003, 107, 13280-13285.
13. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Gratzel, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte, Nature Mater. 2003, 2, 402-407.
14. W. S. Han, J. K. Han, H. Y. Kim, M. J. Choi, Y. S. Kang, C. Pac, S. O. Kang, Electronic optimization of heteroleptic ru(II) bipyridine complexes by remote substituents: synthesis, characterization, and application to dye-sensitized solar cells, Inorg. Chem. 2011, 50, 3271-3280.
15. A. E. Shafei, M. Hussain, A. Atiq, A. Islam, Liyuan Han, A novel carbazole-based dye outperformed the benchmark dye N719 for high efficiency dye-sensitized solar cells (DSSCs), J. Mater. Chem. 2012, 22, 24048-24056.
16. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells, Chem. Rev. 2010, 110, 6595-6663.
17. C. P. Lee, R. Y. Y. Lin, L. Y. Lin, C. T. Li, T. C. Chu, S. S. Sun, J. T. Lin, K. C. Ho, Recent progress in organic sensitizers for dye-sensitized solar cells, RSC Adv. 2015, 5, 23810-23825.
18. M. Urbani, M. Grätzel, M. K. Nazeeruddin, T. Torres, Meso-substituted porphyrins for dye-sensitized solar cells, Chem. Rev. 2014, 114, 12330-12396.
19. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, M. Grätzel, Conversion of light to electricity by cis-2-bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc. 1993, 115, 6382-6390.
20. M. K. Nazeeruddin, R. Splivallo, P. Liska, P. Comte, A swift dye uptake procedure for dye sensitized, M. Grätzel, Chem. Comm. 2003, 1456-1457.
21. S. G. Yan, J. T. Hupp, Solar cells semiconductor-based interfacial electron-transfer reactivity: decoupling kinetics from pH-dependent band energetics in a dye-sensitized titanium dioxide/aqueous solution system, J. Phys. Chem. 1996, 17. 6867-6870.
22. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers, J. Am. Chem. Soc. 2005, 127, 16835-16847.
23. P. Wang, S. M. Zakeeruddin, R. Humphrey-Baker, J. E. Moser, M. Grätzel, Molecular-scale interface engineering of TiO2 nanocrystals: improve the efficiency and stability of dye-sensitized solar cells, Adv. Mater. 2003, 15, 2101-2104.
24. C. Y. Chen, S. J. Wu, C. G. Wu, J. G. Chen, K. C. Ho, A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells, Angew. Chem. Int. Ed. 2006, 118, 5954-5957.
25. C. Y. Chen, M. k. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. h. Ngocle, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, M. Grätzel, Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells, ACS Nano 2009, 3, 3103-3109.
26. K. Kalyanasundaram, Academic Press 1991.
27. M. E. Kober, T. J. Meyer, An electronic structural model for the emitting MLCT excited states of Ru(bpy)32+ and Os(bpy)32+ , Inorg. Chem. 1984, 23, 3877-3886.
28. M. E. Kober, T. J. Meyer, J. V. Caspar, B. P. Sullivan, Synthetic routes to new polypyridyl complexes of osmium(II), Inorg. Chem. 1988, 27, 4587-4598.
29. G. Sauve, M. E. Cass, G. Coia, S. J. Doig, I. Lauermann, K. E. Pomykal, N. S. Lewis, Dye sensitization of nanocrystalline titanium dioxide with osmium and ruthenium polypyridyl complexes, J. Phys. Chem. B 2000, 104, 6821-6836.
30. R. Argazzi, G. Larramona, C. Contado, C. A. Bignozzi, Preparation and photoelectrochemical characterization of a red sensitive osmium complex containing 4,4’,4’’-tricarboxy-2,2’:6’,2’’-terpyridine and cyanide ligands, J. Photochem. Photobiol A Chemistry 2004, 164, 15-21.
31. S. Altobello, R. Argazzi, S. Caramori, C. Contado, S. D. Fre , P. Rubino, C. Chone, G. Larramona, C. A. Bignozzi, Sensitization of nanocrystalline TiO2 with black absorbers based on Os and Ru polypyridine complexes, J. Am. Chem. Soc. 2005, 127, 15342-15343.
32. C. C. Chou, K. L. Wu, Y. Chi,W. P. Hu, S. J. Yu, G. H. Lee, C. L. Lin, P. T. Chou, Ru(II) Sensitizers with Heteroleptic Tridentate Chelates for Dye-Sensitized Solar Cells, Angew. Chem. Int. Ed. 2011, 50, 2054-2058.
33. K. L. Wu, S. T. Ho, C. C. Chou, Y. C. Chang, H. A. Pan, Y. Chi, P. T. Chou, Engineering of osmium(II)-based light absorbers for dye-sensitized solar cells, Angew. Chem. Int. Ed. 2012, 51, 5642-5646.
34. T. Kinoshita, J. i. Fujisawa, J. Nakazaki, S. Uchida, T. Kubo, H. Segawa, Enhancement of near-IR photoelectric conversion in dye-sensitized solar cells using an osmium sensitizer with strong spin-forbidden transition, J. Phys. Chem.Lett. 2012, 3, 394-398.
指導教授 陳家原(Chia-yuan Chen) 審核日期 2016-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明