博碩士論文 102224004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.129.70.157
姓名 王嘉宇(Jia-Yu Wang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 檳榔鹼調控前列腺正常細胞與癌細胞生長的細胞週期訊號蛋白之研究
(Investigations of the cell cycle signaling proteins involved in arecoline modulations of normal and cancerous prostate cells)
相關論文
★ 中華鱉腦垂體甘丙氨激素之研究:cDNA選殖、表現及調控★ 辛基苯酚對3T3-L1脂肪細胞中resistin的調節作用
★ 綠茶表沒食子酸酯型唲茶素酸酯對胰島素刺激前脂肪細胞增生的抑制★ FoxO1 調節抗胰島素激素基因的表現
★ 綠茶表沒食子唲茶素沒食子酸酯受器對於人類乳癌細胞株MCF7生長的影響★ 綠茶表沒食子酸酯型唲茶素酸酯抑制第一型内皮素作用於脂肪細胞上攝入葡萄糖的訊息機制
★ 綠茶表兒茶素藉由microRNA-494路徑改善橫向主動脈繃紮術誘導型小鼠的心臟疾病★ 內皮素誘導前脂肪細胞生長的訊息路徑
★ 綠茶對前脂肪細胞生長的影響★ 綠茶唲茶素對由第一型類胰島素所調節前脂肪細胞生長的影響
★ 綠茶唲茶素對於前脂肪細胞分化的影響★ Cdk2在綠茶唲茶素調節3T3-L1前脂肪細胞的生長和細胞凋亡扮演著必要性的角色
★ 綠茶唲茶素透過MAPK相關途徑抑制3T3-L1前脂肪細胞的生長★ 第一型類胰島素生長因子、綠茶唲茶素及雌性素對3T3-L1脂肪細胞中resistin的基因表達有不同的調節效果
★ 綠茶唲茶素對前脂肪細胞內活性氧及榖胱甘肽的影響★ 胰島素接受器受質在綠茶唲茶素對胰島素刺激前脂肪細胞生長作用中扮演的角色
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 檳榔生物鹼,特別是檳榔鹼,具有許多生物活性。雖然實驗室之前的研究中發現檳榔鹼會使得前列腺正常細胞RWPE-1生長停滯在G2/M phase;前列腺癌細胞PC-3與LNCaP會分別停滯在G2/M phase與G0/G1 phase,但是其作用機制目前仍不清楚。我們利用這三株細胞的控制細胞週期蛋白來觀察檳榔鹼如何差異控制前列腺正常細胞與癌細胞的細胞週期停滯。在RWPE-1細胞,檳榔鹼會誘發CDK1、p21、cyclin B1與cyclin D3的蛋白增加但不影響CDK2、CDK4、p27與cyclin D1的蛋白質表現。在PC-3細胞,檳榔鹼有降低CDK1、p21、p27、cyclin D1、cyclin D3蛋白與增加cyclin B1蛋白表現的趨勢,但不影響CDK4與CDK6蛋白。在LNCaP-FGC細胞,檳榔鹼會誘導CDK2、CDK4與cyclin D1的減少與增加p21、p27和cyclin D3的蛋白質表現,對於CDK1與cyclin B1則是沒有影響。這些結果顯示,檳榔鹼是依靠CDK家族蛋白、CKI家族蛋白與cyclin 家族蛋白來調前列腺正常細胞與癌細胞的細胞週期。有趣的是,在RWPE-1細胞,預處理N-acetylcysteine (NAC)阻擋檳榔鹼增加CDK1、cyclin B1與D3但不阻擋p21的增加;而在PC-3細胞,NAC能夠防止檳榔鹼誘導的CDK2的降低,但不能預防CDK1的降低,同時能夠防止cyclin B1的增加。在LNCaP細胞,檳榔鹼降低的CDK2、CDK4和cyclin D1的蛋白質表現,並抑制檳榔鹼所誘導蛋白質p21、p27和cyclin D3的上升。這些資料顯示了,檳榔鹼的氧化能力對於前列腺正常細胞與癌細胞在調控細胞週期方面會有不同的影響,也因此讓前列腺正常細胞與癌細胞停滯在各自的週期
摘要(英) Betel nut alkaloids (BNAs), especially arecoline, possesses multiple biological activities. Although arecoline was found from our laboratory to induce the G2/M growth arrest of normal human RWPE-1 prostate cells and the respective G2/M and G0/G1 growth arrests of human PC-3 and LNCaP prostate cancer cells, the exact mechanisms of its differential actions are still not clear. Using all the three cell lines, we investigated cell cycle controlling proteins involved in differential arecoline modulations of normal and cancerous prostate cell growth arrests. In RWPE-1 cells, arecoline induced increases in CDK1, p21, and cyclins B1 and D3 proteins and no significant effects in CDK2, CDK4, and cyclin D1 protein levels. In PC-3 cells, arecoline tended to decrease levels of CDK1, p21, p27, cyclin D1, and cyclin D3 proteins and increase cyclin B1 levels, but it had no effects on CDK4 and CDK6 proteins. In LNCaP cells, arecoline induced decreases in CDK2, CDK4, and cyclin D1 proteins, increases in p21, p27, and cyclin D3 proteins, and no effects on CDK1 and cyclin B1 proteins. These data suggest that arecoline regulates the cell cycles of normal and cancerous prostate cells in CDK subfamily-, cyclin subfamily-, and CKI subfamily-dependent manners. Interestingly, pretreatment with the antioxidant N-acetylcysteine (NAC) blocked the arecoline induced increases in CDK1 and cyclins B1 and D3 but not p21 proteins in RWPE-1 cells, while NAC prevented arecoline-induced decreases in CDK2 but not CDK1 proteins and arecoline-increased cyclin B1 protein levels in PC-3 cell. In LNCaP cells, NAC blocked arecoline-decreased levels of CDK2, CDK4 and cyclin D1 proteins and suppressed arecoline-increased levels of p21, p27, and cyclin D3 proteins. These data suggest that the oxidant activity of arecoline made different impacts on cell cycle controlling proteins between normal and cancerous prostate cancer cells and thereby inducing different phases of their growth arrests.
關鍵字(中) ★ 檳榔鹼
★ 前列腺癌
★ 前列腺正常細胞
★ 細胞週期
關鍵字(英) ★ arecoline
★ prostate cancer
★ normal prostate cell
★ cell cycle
論文目次 中文摘要 … … … … … … … … … … … … … … ……i
英文摘要 ………………………………………………………… ii
誌謝 ………………………………………………………………iii
目錄 ……………………………………………………………… iv
縮寫對照表 …………………………………………………………v
一、 前言……………………………………………………………1
1-1 前列腺癌……………………………………………………… 1
1-2 檳榔 … … … … … … … … … … … … … … … 4
1-3 研究動機與目的……………………………………………… 8
二、 實驗材料與方法………………………………………………10
2-1 實驗材料……………………………………………………… 10
2-2 細胞培養……………………………………………………… 10
2-3 細胞處理……………………………………………………… 10
2-4 西方點墨法…………………………………………………… 11
2-5 統計分析……………………………………………………… 13
三、 結果………………………………………………………… 14
3-1 Arecoline 影響前列腺上皮細胞與前列腺癌細胞 的 CDK 家
族蛋白……………………………………………………………… 14
3-2 Arecoline 影響前列腺上皮細胞與前列腺癌細胞 的 CKI 家
族蛋白……………………………………………………………… 14
3-3 Arecoline影響前列腺上皮細胞與前列腺癌細胞 的 cyclin家
族蛋白……………………………………………………………… 15
3-4 預處理 NAC 會影響 Arecoline 影響前列腺正常細胞與癌細
胞 Cdk 家族蛋白表現作用…………………………………………16
3-5 預處理 NAC 會影響 Arecoline 影響前列腺正常細胞與癌細
胞 CKI 家族蛋白表現作用…………………………………………17
3-6 預處理 NAC 會影響 Arecoline 影響前列腺正常細胞與癌細
胞 cyclin 家族蛋白表現作用…………………………………… 18
四、 討論……………………………………………………………19
五、 結論……………………………………………………………23
六、 未來展望………………………………………………………24
七、 參考文獻………………………………………………………25
八、 表目錄…………………………………………………………33
九、 圖目錄…………………………………………………………36
參考文獻 [1] 鄭靖耀,「檳榔生物鹼對於前列腺癌細胞生長和轉移的影響」,國立中央大學,碩士論文,民國102年。
[2] 田子函,「檳榔生物鹼調節3T3-L1前脂肪細胞的生長」,國立中央大學,碩士論文,民國103年。
[3] 蒲永孝,攝護腺癌治療—2016 新趨勢,台大醫院泌尿部、台灣楓城泌尿學會,台北,2016年
[4] 蒲永孝,局部性(未轉移)攝護腺癌各種治療法比較,台大醫院泌尿部、台灣楓城泌尿學會,台北,2015 年
[5] Crawford ED, Eisenberger MA, McLeod DG, SpauldingJT, Benson R, Dorr FA, Blumenstein BA, Davis MA,Goodman PJ. 1989 A controlled trial of leuprolide withand without flutamide in prostatic carcinoma. N Engl N EnglJ Med. 321:419–424
[6] Kokontis J, Takakura K, Hay N, Liao S. 1994 Increased androgen receptor activityand altered c-myc expression in prostate cancer cells after long-termandrogen deprivation. Cancer Res. 54:1566-1573.
[7] Kaighn, M.E.; K.S. Narayan, Y. Ohnuki, J. F.2012 Lechner, and L.W. Jones. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol. 17 (1): 16–23.
[8] Webber MM, Rhim JS. 1998 Immortalized and malignant human prostatic cell lines. US Patent. 5:824-488
[9] Halliwell B.1994 Free radicals and antioxidants: A personal view. Nutr. 52(2), 253-265.
[10] Kehrer J.P. 1993 Free radicals as mediators of tissue injury and disease. Crit. Toxicol. 23(1), 21-48.
[11] Oberley TD, Zhong W, Szweda LI, Oberley LW.2000 Localization of antioxidantenzymes and oxidative damage products in normal and malignant prostate epithelium. Prostate.44: 144–155.
[12] Graham S, Haughey B, Marshall J, Priore R, Byers T, Rzepka T, Mettlin C.1983 Pontes JE.J Natl Cancer Inst.Diet in the epidemiology of carcinoma of the prostate gland. 70(4):687-92.
[13] Snowdon DA, Phillips RL, Choi W.1984Diet, obesity, and risk of fatal prostate cancer.Am J Epidemiol. 120(2):244-50.
[14] Haseen F, Cantwell MM, O′Sullivan JM, Murray LJ.2009 Is there a benefit from lycopene supplementation in men with prostate cancer? A systematic review. Prostate Cancer Prostatic Dis.12(4):325-32.
[15] Hurst R, Hooper L, Norat T, Lau R, Aune D.2012 Greenwood DC, et al. Selenium and prostate cancer: systematic review and meta-analysis. Am. J. Clin. Nutr. 96(1):111-22.
[16] Richman EL, Carroll PR, Chan JM.2012 Vegetable and fruit intake after diagnosis and risk of prostate cancer progression. Int. J. Cancer. 131(1):201-10.
[17] Klein EA TI.2011 Vitamin e and the risk of prostate cancer: The selenium and vitamin e cancer prevention trial (select). JAMA. 06(14):1549-56.
[18] Halliwell B.1994 Free radicals and antioxidants: A personal view. Nutr. 52(2), 253-265.
[19] Albrecht DS, Clubbs EA, Ferruzzi M, Bomser JA.2008 Epigallocatechin-3-gallate (EGCG) inhibits PC-3 prostate cancer cell proliferation via MEK-independent ERK1/2 activation. Chem Biol Interact. 171(1):89-95
[20] Nelson, B. S. & Heischober, B. 1999 Betel nut: A common drug used by naturalized citizens from India, far east Asia, and the south pacific islands. Annals of Emergency Medicine34, 238–243.
[21] Cox, S., Vickers, E. R., Ghu, S. & Zoellner, H. 2010 Salivary arecoline levels during areca nut chewing in human volunteers. Journal of Oral Pathology & Medicine39, 465–469 .
[22] Nair, J. et al. 1985 Tobacco-specific and betel nut-specific N-nitroso compounds: Occurrence in saliva and urine of betel quid chewers and formation in vitro by nitrosation of betel quid. Carcinogenesis6, 295–303 .
[23] IARC., 2004. Betel-quid and areca-nut chewing. IARC Monogr Eval Carcinog Risk Chem Hum 37, 137–202.
[24] Nelson, B. S. & Heischober, B. 1999 Betel nut: A common drug used by naturalized citizens from India, far east Asia, and the south pacific islands. Annals of Emergency Medicine34, 238–243.
[25] Giri, S. et al. 2006 A Metabolomic approach to the metabolism of the Areca nut alkaloids Arecoline and Arecaidine in the mouse. Chemical Research in Toxicology19, 818–827
[26] Asthana, S. et al. 1996 Clinical pharmacokinetics of arecoline in subjects with Alzheimer’s disease*. Clinical Pharmacology & Therapeutics60, 276–282 .
[27] Shih, Y.-T. et al. 2010 Arecoline, a major alkaloid of the areca nut, causes neurotoxicity through enhancement of oxidative stress and suppression of the antioxidant protective system. Free Radical Biology and Medicine49, 1471–1479 .
[28] Hung, C.-R., Cheng, J.-T. & Shih, C.-S. 2000 Gastric mucosal damage induced by arecoline seizure in rats. Life Sciences66, 2337–2349 .
[29] Thangjam, G. S. & Kondaiah, P. 2009 Regulation of oxidative-stress responsive genes by arecoline in human keratinocytes. Journal of Periodontal Research44, 673–682 .
[30] Lai, K.-C. & Lee, T.-C. 2006 Genetic damage in cultured human keratinocytes stressed by long-term exposure to areca nut extracts. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis599, 66–75 .
[31] Shirname, L. P., Menon, M. M., Nair, J. & Bhide, S. V. 1983 Correlation of mutagenicity and tumorigenicity of betel quid and its ingredients. Nutrition and Cancer5, 87–91 .
[32] Chang, M.-C. et al. 2004 The induction of prostaglandin E2 production, Interleukin-6 production, cell cycle arrest, and Cytotoxicity in primary oral Keratinocytes and KB cancer cells by Areca nut ingredients is Differentially regulated by MEK/ERK activation. Journal of Biological Chemistry279, 50676–50683 .
[33] Jeng, J.-H. et al. 2003 Roles of keratinocyte inflammation in oral cancer: Regulating the prostaglandin E2, interleukin-6 and TNF- production of oral epithelial cells by areca nut extract and arecoline. Carcinogenesis24, 1301–1315.
[34] Ji WT, et al. 2012 Arecoline downregulates levels of p21 and p27 through the reactive oxygen species/mTOR complex 1 pathway and may contribute to oral squamous cell carcinoma. Cancer Sci, 103(7):1221-9.
[35] Chu, T. M.1997 Prostate-specific antigen and early detection of prostate cancer. Tumor Biol.18:123-134
[36] Thangjam G.S, Kondaiah P., 2009. Regulation of oxidative-stress responsive genes by arecoline in human keratinocytes. J Periodontal Res. 44, 673-82.
[37] Kuo FC, Wu DC, Yuan SS, Hsiao KM, Wang YY, Yang YC, Lo YC., 2005. Effects of arecoline in relaxing human umbilical vessels and inhibiting endothelial cell growth. J Perinat Med. 33, 399-405.
[38] Pu, Y.-S. 2000 Prostate cancer in Taiwan: Epidemiology and risk factors. International Journal of Andrology23, 34–36 .
[39] Lanzafame, A. A., Christopoulos, A. & Mitchelson, F. 2003 Cellular signaling mechanisms for Muscarinic Acetylcholine receptors. Receptors and Channels9, 241–260 .
[40] Eglen RM. 2006 Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function.Auton Autacoid Pharmacol. 26(3):219-33.
[41] Ghelardini C, Galeotti N, Lelli C, Bartolini A., 2001. M1 receptor activation is a requirement for arecoline analgesia. Farmaco. 56, 383-5.
[42] Yang YR, Chang KC, Chen CL, Chiu TH., 2000. Arecoline excites rat locus coeruleus neurons by activating the M2-muscarinic receptor. Chin J Physiol. 43, 23-8.
[43] Xie DP, Chen LB, Liu CY, Zhang CL, Liu KJ, Wang PS., 2004. Arecoline excites the colonic smooth muscle motility via M3 receptor in rabbits. Chin J Physiol. 47, 89-94.
[44] Chiu CC, Chen BH, Hour TC, Chiang WF, Wu YJ, Chen CY, Chen HR, Chan PT, Liu SY, Chen JY., 2010. Betel quid extract promotes oral cancer cell migration by activating a muscarinic M4 receptor-mediated signaling cascade involving SFKs and ERK1/2. Biochem Biophys Res Commun. 399, 60-5.
[45] Tillakaratne, N. J. K., Medina-Kauwe, L. & Gibson, K. M. 1995 Gamma-aminobutyric acid (GABA) metabolism in mammalian neural and nonneural tissues. Comparative Biochemistry and Physiology Part A: Physiology 112, 247–263.
[46] Chu NS. 2001 Effects of Betel chewing on the central and autonomic nervous systems. J Biomed Sci. 8(3):229-36.
[47] Martino, G. V. et al. 1991 Autoantibodies to glutamic acid decarboxylase (GAD) detected by an immuno-trapping enzyme activity assay: Relation to insulin-dependent diabetes mellitus and islet cell antibodies. Journal of Autoimmunity4, 915–923 .
[48] Ho WH, Lee YY, Chang LY, Chen YT, Liu TY, Hung SL., 2010. Effects of areca nut extract on the apoptosis pathways in human neutrophils. J Periodontal Res. 45, 412-20.
[49] Dasgupta R, Saha I, Pal S, Bhattacharyya A, Sa G, Nag TC, Das T, Maiti BR., 2006. Immunosuppression, hepatotoxicity and depression of antioxidant status by arecoline in albino mice. Toxicology 227, 94-104.
[50] Chang MC, Ho YS, Lee PH, Chan CP, Lee JJ, Hahn LJ, Wang YJ, Jeng JH., 2001. Areca nut extract and arecoline induced the cell cycle arrest but not apoptosis of cultured oral KB epithelial cells: association of glutathione, reactive oxygen species and mitochondrial membrane potential. Carcinogenesis 22, 1527-35.
[51] Huang LW, Hsieh BS, Cheng HL, Hu YC, Chang WT, Chang KL., 2012. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells. Toxicol Appl Pharmacol. 258, 199-207.
[52] Ando T, Kawabe T, Ohara H, Ducommun B, Itoh M, Okamoto T. 2001 Involvement of the interaction between p21 and proliferating cell nuclear antigen for the maintenance of G2/M arrest after DNA damage. J Biol Chem. 16;276(46):42971-7
[53] Tsai YS, Lee KW, Huang JL, Liu YS, Juo SH, Kuo WR, Chang JG, Lin CS, Jong YJ., 2008. Arecoline, a major alkaloid of areca nut, inhibits p53, represses DNA repair, and triggers DNA damage response in human epithelial cells. Toxicology 249, 230-7.
[54] Chou WW, Guh JY, Tsai JF, Hwang CC, Chen HC, Huang JS, Yang YL, Hung WC, Chuang LY., 2008. Arecoline-induced growth arrest and p21WAF1 expression are dependent on p53 in rat hepatocytes. Toxicology 243, 1-10.
[55] Troncone G1, Iaccarino A, Russo M, Palmieri EA, Volante M, Papotti M, Viglietto G, Palombini L. 2007 Accumulation of p27(kip1) is associated with cyclin D3 overexpression in the oxyphilic (Hurthle cell) variant of follicular thyroid carcinoma. J Clin Pathol. (4):377-81
[56] Ku, H.-C. et al. 2012 Green tea (-)-epigallocatechin gallate inhibits IGF-I and IGF-IIstimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor, but not aMP-activated protein kinase pathway. Molecular Nutrition & Food Research56, 580–592.
[57] Saha I, Chatterjee A, Mondal A, Maiti BR, Chatterji U.2011 Arecolineaugments cellular proliferation in the prostate gland of male Wistar rats.Toxicol Appl Pharmacol. 255(2).160-8.
[58] Saha I, Chatterji U, Chaudhuri-Sengupta S, Nag TC, Nag D,Banerjee S, Maiti BR.2007 Ultrastructural and hormonal changes in the pineal-testicular axis following arecoline administration in rats.J Exp Zool A Ecol Genet Physiol. 307(4):187-9
指導教授 高永旭(Yung-Hsi Kao) 審核日期 2017-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明