博碩士論文 102224011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.145.58.169
姓名 汪致霖(Chih-lin Wang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 硫化屬古生菌中的酮醇酸還原異構酶結構分析
(Structural analysis of ketol-acid reductoisomerase from Sulfolobus solfataricus)
相關論文
★ 古生菌嗜酸熱硫化葉菌的乙醯乳酸還原異構酶的晶體結構以及穩定性★ 硫化葉菌屬中耐熱酮醇酸還原異構酶之結構性及功能性分析
★ 嗜酸熱硫化葉菌的DNA結合蛋白Saci_0101之結構與功能分析★ PDCD5蛋白在Sulfolobus solfataricus 古生菌的結構與功能分析
★ 嗜酸熱硫化葉菌中去氧核醣核酸結合蛋白Saci_1212之結構性及功能性分析★ 硫磺礦硫化葉菌程序性細胞死亡蛋白5晶體結構分析及其與DNA的相互作用
★ 嗜酸熱硫化葉菌中DNA結合蛋白Sac10b之結構分析及其與DNA相互作用★ 嗜酸熱硫化葉菌酮醇酸還原異構酶與輔酶共晶體結構及活性分析
★ 脂肪酸特異互養棲熱菌酮醇酸還原異構酶之晶體結構及活性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 酮醇酸還原異構酶可以在植物、真菌和細菌體內找到,而動物體內則沒有此酵素存在。酮醇酸還原異構酶可以應用在產生支鏈形胺基酸、生質能源以及除草劑。酮醇酸還原異構酶是支鏈形胺基酸生合成反應第二個反應的酵素,可以將乙酰乳酸轉變成2,3-二羥基異戊酸。此轉變過程包含了兩個反應,先依靠鎂離子將烷基轉移,之後在消耗菸鹼醯胺腺嘌呤二核苷酸磷酸(NADPH)還原兩個酮基。我們發現硫化屬古生菌(Sulfolobus solfataricus)中具有三個酮醇酸還原異構酶,分別是酮醇酸還原異構酶-1、酮醇酸還原異構酶-2和酮醇酸還原異構酶-3。這三個酮醇酸還原異構酶的基因序列之間並不完全相同,但是具有相同屬於酮醇酸還原異構酶的保守基因,且尚未了解其在生物體內分別的作用。在我的研究中,以大腸桿菌BL21(DE3)來大量表現酮醇酸還原異構酶-3,並利用快速蛋白質液相層析系統純化此蛋白質,我們發現酮醇酸還原異構酶-3在溶液中是以十二聚體的形式存在,並成功得到此十二聚體蛋白質的晶體,但晶體繞射訊號不佳。因此我們從電顯影像中,利用單分子重建法得到此十二聚體的三維平均結構,並用模擬的原子結構模型代入三維平均結構,嘗試以此方法來預測其四級結構組成,我們發現以單分子三維重構法重建出的酮醇酸還原異構酶-3結構與同一類的酮醇酸還原異構酶非常相似,在未來我們希望利用這個模擬的原子結構來探究其功能。
摘要(英) Ketol-acid reductoisomerase (KARI) enzyme which is found in plants, fungi and bacteria but not in animals has attracted much interest for production of amino acids, biofuels and development of antimicrobial agents. The KARI is the second enzyme in the branched-chain amino acid biosynthesis pathway, which conversion of 2-acetolactate into 2,3-dihydroxyisovalerate. The conversion involves an Mg2+-dependent alkyl migration followed by a Nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of the 2-keto group. We have found that there are three homologs, IlvC1, IlvC2 and IlvC3 from sulfolobus solfataricus. The amino acid sequences of these three KARIs possess conserved regions despite they are not highly similar to one another and their function in vivo is not clear. In my study, ilvc3 were overexpressed in E. coli BL21 (DE3) and purified by FPLC. The ilvc3 was a dodecamer in solution with molecular weight ~450 kDa. We successfully found the condition of crystallize, however the diffraction of ilvc3 crystal was poor. Therefore, we built a 3D map of Ilvc3 by single particle 3D reconstruction atomic model, which could help us to determine the quaternary structure. It was discovered that the modeling structure of ilvc3 was similar to the other KARI in different species. In future, we attempt to study the function by the modeling atomic structure.
關鍵字(中) ★ 酮醇酸還原異構酶
★ 硫化屬古生菌
★ 蛋白質結構
關鍵字(英) ★ Sulfolobus solfataricus
★ ketol-acid reductoisomerase
★ Structural analysis
論文目次 中文摘要 - 1 -
Abstract - 2 -
Table of Contents - 3 -
Chapter.1 introduction - 6 -
1.1 Background - 6 -
1.1.1 Ketol-acid reductoisomerase - 6 -
1.1.2 Sulfolobus solfataricus - 8 -
1.1.3 Structural biology - 9 -
1.2 Specific aims - 10 -
Chapter.2 Material & Method - 12 -
2.1 Cloning and construction - 12 -
2.1.1 Polymerase chain reaction (PCR) - 12 -
2.1.2 Agarose gel electrophoresis - 12 -
2.1.3 Restriction enzyme digestion - 13 -
2.1.4 Ligation - 13 -
2.1.5 Transformation - 13 -
2.1.6 Sequencing - 14 -
2.2 Protein expression - 15 -
2.2.1 Isopropyl β-D-1-thiogalactopyranoside (IPTG) induction system - 15 -
2.2.2 Time course - 15 -
2.3 Total protein extraction - 15 -
2.4 Protein purification - 16 -
2.4.1 Heat treatment assay - 16 -
2.4.2 Fast protein liquid chromatography (FPLC) - 16 -
2.4.3 Sodium dodecyl sulfate poly-acrylamide-gel-electrophoresis (SDS-PAGE) - 17 -
2.4.4 Protein quantification - 17 -
2.5 Structural analysis - 18 -
2.5.1 Size-exclusion chromatography - 18 -
2.5.2 Crystallization - 19 -
2.5.3 Circular Dichroism (CD) Spectrum - 19 -
2.5.4 Electron microscopy (EM) - 20 -
2.5.5 Single particle reconstruction - 20 -
2.5.6 Modeling - 21 -
2.5.7 Fit in 3D maps - 22 -
Chapter.3 Result - 23 -
3.1 Construction of IlvC3 from Sulfolobus solfataricus with his-tag - 23 -
3.2 Protein expression of IlvC3 - 23 -
3.3 Heat treatment assay and protein purification of IlvC3 - 24 -
3.4 The oligomerization of IlvC3 - 24 -
3.5 Crystallization of IlvC3 dodecamer - 25 -
3.6 IlvC-3 3D reconstruction - 25 -
3.7 The atomic structure modeling of IlvC3 - 26 -
Chapter.4 Discussion - 27 -
References - 29 -
Ⅰ. Figure - 32 -
Figure 1 Branched amino acid biosynthesis pathway. - 32 -
Figure 2 Reaction catalyzed by KARI, reaction intermediate analogues. - 33 -
Figure 3 Phylogenetic Tree - 34 -
Figure 4 IlvC3 conserved domains - 35 -
Figure 5 Colony PCR. - 36 -
Figure 6 IlvC3 DNA and protein sequence - 37 -
Figure 7 Time course of recombinant KARI at 37 oC and 25 oC - 38 -
Figure 8 The purification of ilvC-3 by SDS-PAGE. - 39 -
Figure 9 Circular Dichroism Spectrum. - 40 -
Figure 10 Molecular weight analysis. - 41 -
Figure.11 Crystal images - 43 -
Figure.12 Single particle reconstruction - 44 -
Figure 13 Fitting modeling sequence to 3D reconstruction images. - 47 -
Figure 14 The structure of class I KARI from different species - 48 -
Ⅱ. Table - 49 -
Ⅱ. Appendix - 53 -
Appendix 1 Class I KARI structure overview - 53 -
Appendix 2 Specificity loops of selected KARIs - 54 -
Appendix 3 Engineered pathway for isobutanol production - 55 -

參考文獻 1. McCourt, J.A. and R.G. Duggleby, Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids, 2006. 31(2): p. 173-210.
2. Dumas, R., et al., Enzymology, structure, and dynamics of acetohydroxy acid isomeroreductase. Acc Chem Res, 2001. 34(5): p. 399-408.
3. Tyagi, R., et al., Probing the mechanism of the bifunctional enzyme ketol-acid reductoisomerase by site-directed mutagenesis of the active site. FEBS J, 2005. 272(2): p. 593-602.
4. Ahn, H.J., et al., Crystal structure of class I acetohydroxy acid isomeroreductase from Pseudomonas aeruginosa. J Mol Biol, 2003. 328(2): p. 505-15.
5. Cahn, J.K., et al., Cofactor specificity motifs and the induced fit mechanism in Class I ketol-acid reductoisomerases. Biochem J, 2015.
6. Brinkmann-Chen, S., J.K. Cahn, and F.H. Arnold, Uncovering rare NADH-preferring ketol-acid reductoisomerases. Metab Eng, 2014. 26C: p. 17-22.
7. Brinkmann-Chen, S., et al., General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH. Proc Natl Acad Sci U S A, 2013. 110(27): p. 10946-51.
8. Wong, S.H., et al., Bacterial and plant ketol-acid reductoisomerases have different mechanisms of induced fit during the catalytic cycle. J Mol Biol, 2012. 424(3-4): p. 168-79.
9. McCourt, J.A., et al., Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc Natl Acad Sci U S A, 2006. 103(3): p. 569-73.
10. Dumas, R., et al., Interactions of plant acetohydroxy acid isomeroreductase with reaction intermediate analogues: correlation of the slow, competitive, inhibition kinetics of enzyme activity and herbicidal effects. Biochem J, 1994. 301 ( Pt 3): p. 813-20.
11. Bastian, S., et al., Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng, 2011. 13(3): p. 345-52.
12. Connor, M.R. and J.C. Liao, Microbial production of advanced transportation fuels in non-natural hosts. Curr Opin Biotechnol, 2009. 20(3): p. 307-15.
13. Atsumi, S., et al., Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol, 2010. 85(3): p. 651-7.
14. Brock, T., Brock, K., Belly, R., and Weiss, R, Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Archives of Microbiology.. . Vol. Volume 84. 1972.
15. She, Q., et al., The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci U S A, 2001. 98(14): p. 7835-40.
16. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P., Analyzing Protein Structure and Function. Molecular Biology of the Cell, ed. t. edition. 2002.
17. Sikic, K., S. Tomic, and O. Carugo, Systematic comparison of crystal and NMR protein structures deposited in the protein data bank. Open Biochem J, 2010. 4: p. 83-95.
18. Lindorff-Larsen, K., et al., Simultaneous determination of protein structure and dynamics. Nature, 2005. 433(7022): p. 128-32.
19. Clore, G.M. and A.M. Gronenborn, Determining the structures of large proteins and protein complexes by NMR. Trends Biotechnol, 1998. 16(1): p. 22-34.
20. PDB, R. Looking at Structures: Methods for Determining Atomic Structures. Structural View of Biology.
21. Allen, G.S. and D.L. Stokes, Modeling, docking, and fitting of atomic structures to 3D maps from cryo-electron microscopy. Methods Mol Biol, 2013. 955: p. 229-41.
22. Reimer, L., Types of Electron Microscopy. Transmission Electron Microscopy: Physics of Image Formation and Microanalysis.
23. Zhou, Z.H., Towards atomic resolution structural determination by single-particle cryo-electron microscopy. Curr Opin Struct Biol, 2008. 18(2): p. 218-28.
24. Bartlett, J.M. and D. Stirling, A short history of the polymerase chain reaction. Methods Mol Biol, 2003. 226: p. 3-6.
25. Sambrook J, R.D., Molecular Cloning: A Laboratory Manual 3rd Ed. 2001.
26. Hartl, D.L., Jones, Elizabeth W, Genetics: Analysis of Genes and Genomes, ed. F. Edition. 2001.
27. Joseph Sambrook, D.W.R., Molecular cloning : a laboratory manual, ed. r. ed. 2001.
28. Hansen, L.H., S. Knudsen, and S.J. Sorensen, The effect of the lacY gene on the induction of IPTG inducible promoters, studied in Escherichia coli and Pseudomonas fluorescens. Curr Microbiol, 1998. 36(6): p. 341-7.
29. Laboratory, E.M.B. Protein Purification EXTRACTION AND CLARIFICATION PREPARATION OF CELL LYSATES FROM E.COLI. 2005.
30. Grimsley, G.R. and C.N. Pace, Spectrophotometric determination of protein concentration. Curr Protoc Protein Sci, 2004. Chapter 3: p. Unit 3 1.
31. Greenfield, N.J., Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 2006. 1(6): p. 2876-2890.
32. Ludtke, S.J., P.R. Baldwin, and W. Chiu, EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol, 1999. 128(1): p. 82-97.
33. Ludtke, S.J., 3-D structures of macromolecules using single-particle analysis in EMAN. Methods Mol Biol, 2010. 673: p. 157-73.
34. Frank, J., Single-particle reconstruction of biological macromolecules in electron microscopy--30 years. Q Rev Biophys, 2009. 42(3): p. 139-58.
35. Bordoli, L., et al., Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc, 2009. 4(1): p. 1-13.
36. Hanukoglu, I., Proteopedia: Rossmann fold: A beta-alpha-beta fold at dinucleotide binding sites. Biochem Mol Biol Educ, 2015. 43(3): p. 206-9.

指導教授 陳青諭(Chin-Yu Chen) 審核日期 2015-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明