博碩士論文 102224015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.146.37.35
姓名 邱炳豪(Bin-Hao Chiou)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 4-aminobiphenyl誘導HepG2細胞中的microRNAs表現 並藉由microRNAs調控DNA修復機制
(MicroRNA regulation of DNA repair gene expression in4-aminobiphenyl-treated HepG2 cells)
相關論文
★ 研究Dicrotophos對HepG2細胞毒性之分子機制:CSA蛋白質在毒性扮演之角色★ TNT經由ROS介導之內質網壓力及粒線體失衡誘導人類肝臟細胞凋亡
★ Pseudomonas sp. A46全基因組分析與重金屬復育基因工程菌開發★ 4-Aminobiphenyl 調控 miR-630 抑制 RAD18 表現誘導 Hep3B 細胞產生氧化性 DNA 損傷
★ 三硝基甲苯之毒理機制及生物降解暨多氯乙烯汙染模場生物整治★ 探討人類肝癌細胞HepG2經4-氨基聯苯處理過後miRNA-630對於同源重組修復相關蛋白MCM8的調控機制
★ 假單胞菌Pseudomonas sp. A46之基因工程菌開發及重金屬之生物累積和生物吸附潛力探討★ 開發新穎性包埋Dehalococcoides mccartyi及Clostridium butyricum之長效脫氯膠體
★ 探討DNA損傷反應與慢性暴露4-胺基聯苯產生之肝臟毒性★ 以Lpp-OmpA工法建構新穎性基因工程菌強化鎘生物復育能力
★ 建構脫鹵球菌與固氮菌共培養系統促進氮源缺乏環境下的還原脫氯作用★ 硒代胱氨酸通過誘導人肝細胞癌中的 DNA 損傷和抑制 DNA 修復途徑來增強順鉑敏感性
★ 轉錄體分析 Acetobacterium woodii 降解1,1,1-三氯乙烷機制並用以協助 Dehalococcoides進行還原脫氯★ 以宏觀基因體分析新穎 Candidatus Dehalobacterium strain DLY 降解二氯甲烷機制
★ 研究雙特松對HepG2細胞之DNA修復的影響★ 金屬硫蛋白在大腸桿菌的表達與金屬累積能力測試
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 流行病學研究指出,當生物體長期暴露在4-胺基聯苯 (4-aminobiphenyl,4-ABP) 的環境下,會造成肝臟細胞的DNA damage與DNA adducts,甚至會誘導膀胱癌的形成。4-ABP進入到人體後,會藉由肝臟細胞的phase I與phase II的氧化還原進行代謝,但過程中會產生自由基,進一步地導致DNA 雙股斷裂。本篇研究主要深入探討,4-ABP所造成的DNA損傷,其細胞內的自體修復機制為什麼不能立即做修補,是不是還有其他因素來調控修復機制? 首先利用comet assay來觀察DNA damage程度,處理4-ABP (0-300M)後,發現4-ABP確實會造成HepG2 cell的DNA損傷。PCR array與miRNAs microarray結果亦顯示,有16個關於DNA repair相關的基因表現下降,27個miRNAs 表現差異高達三倍以上,其中miR-630與miR-513a-5p為最顯著的表現。因此想深入探討,其DNA repair相關基因的失調,是否因為miRNAs所調控。研究結果顯示,miR-630會target在RAD18與EXO1的3’UTR上、miR-513a-5p則會target在XRCC2與FANCG之3’UTR。利用質體轉染技術,讓細胞內的miR-630和miR-513a-5p大量表現或抑制,皆會影響RAD18、XRCC2與FANCG的蛋白質表現。有文獻指出,4-ABP最主要會造成HepG2 cell的氧化性基因損傷並導致DNA double strands break,因此以miR-513a-5p與XRCC2為本研究主軸。
4-ABP (75M) 與自由基抑制劑NAC結合處理,發現4-ABP誘導ROS的產生,會使miR-513a-5p大量表現,並進一步地導致XRCC2蛋白表現失調。將XRCC2 蛋白大量表現,其DNA damage的程度也有顯著性的被修復。本研究證明了4-ABP、oxidative stress、miR-513a-5p、XRCC2與DNA damage之間的互相調控機制,並釐清4-ABP所造成的DNA damage,其DNA repair system為什麼不能立即修復。最後,本研究提供了一個4-ABP所造成肝臟細胞的氧化基因損傷之預防檢測與治療的方向。
摘要(英) The study goal was to evaluate the effects of 4-aminobiphenyl (4-ABP) on DNA damage based on the regulation of miRNAs to suppress some reducing DNA-repair proteins in human HepG2 cells. In this study, we used comet assay to determine that 4-ABP (0–300 M) induces DNA damage in HepG2 cells after 24 hours. DNA damage signaling pathway-based PCR arrays were used to investigate differential expressed genes response to 4-ABP treatment. In parallel, the miRNAs array was revealed that the expression of 27 miRNAs in 4-ABP-treated cells was at least 3-fold higher than that in the control group. Of these 27 miRNAs, the most significant expression of miRNA-513a-5p and miRNA-630 was further validated by qRT-PCR, which was predicted to target to RAD18、XRCC2 and FANCG genes, respectively, via bioinformatic analysis. In addition, overexpression and knockdown of miRNA-630 and miRNA-513a-5p inversely regulate the expression of RAD18、XRCC2 and FANCG proteins expression levels. 
We found that ROS production is crucial for 4-ABP-induced miR-513a-5p expression and this phenomenon would be abolished by ROS inhibitor N-acetylcysteine. XRCC2 overexpression that the extent of DNA damage will be eminently repaired as well. Based on these, we indicated the mechanism of 4-ABP→ROS→miR-513a-5p --| XRCC2→DNA damage, and provide a potential application for prevention and therapy in future.
關鍵字(中) ★ 4-胺基聯苯
★ 氧化壓力
★ miR-513a-5p
★ XRCC2
★ DNA損傷
關鍵字(英) ★ 4-aminobiphenyl
★ oxidative stress
★ miR-513a-5p
★ XRCC2
★ DNA damage
論文目次 目錄
致謝 IV
中文摘要 V
英文摘要 VI
第壹章、緒論 1
第貳章、實驗目的和實驗架構 8
第參章、材料與方法 9
第一節、實驗材料 9
第二節、實驗方法 16
一、細胞株來源、解凍及繼代培養 16
二、細胞計數 17
三、細胞存活率分析 18
四、細胞內活性氧化物質之測定 19
五、測定DNA損傷程度之彗星試驗 20
六、抽取細胞之total RNA 22
七、反轉錄作用 23
八、DNA/RNA電泳 24
九、蛋白質萃取 25
十、蛋白質濃度測定 26
十一、蛋白質電泳 27
十二、蛋白質轉漬 28
十三、西方免疫墨點法 29
十四、即時定量聚合酶連鎖反應 30
十五、大腸桿菌勝任細胞製備 31
十六、大腸桿菌勝任細胞之轉型作用 32
十七、利用限制酵素切開雙股DNA 34
十八、插入子與載體接合 35
十九、酒精沉澱DNA 35
二十、質體抽取 36
二十一、多點突變 37
二十二、質體及RNAi轉染 38
二十三、螢光酶活性測試 39
第肆章、結果 41
第伍章、討論 48
參考文獻 57
圖表 65
附錄 96
參考文獻 1. Mommsen, S. and Aagaard, J. (1983) Tobacco as a risk factor in bladder cancer. Carcinogenesis, 4, 335-338.
2. Chengalroyen, M.D. and Dabbs, E.R. (2013) The microbial degradation of azo dyes: minireview. World J Microbiol Biotechnol, 29, 389-399.
3. Talaska, G., Schamer, M., Skipper, P., Tannenbaum, S., Caporaso, N., Unruh, L., Kadlubar, F.F., Bartsch, H., Malaveille, C. and Vineis, P. (1991) Detection of carcinogen-DNA adducts in exfoliated urothelial cells of cigarette smokers: association with smoking, hemoglobin adducts, and urinary mutagenicity. Cancer Epidemiol Biomarkers Prev, 1, 61-66.
4. Airoldi, L., Orsi, F., Magagnotti, C., Coda, R., Randone, D., Casetta, G., Peluso, M., Hautefeuille, A., Malaveille, C. and Vineis, P. (2002) Determinants of 4-aminobiphenyl-DNA adducts in bladder cancer biopsies. Carcinogenesis, 23, 861-866.
5. Beland, F.A., Beranek, D.T., Dooley, K.L., Heflich, R.H. and Kadlubar, F.F. (1983) Arylamine-DNA adducts in vitro and in vivo: their role in bacterial mutagenesis and urinary bladder carcinogenesis. Environ Health Perspect, 49, 125-134.
6. Yoon, J.I., Kim, S.I., Tommasi, S. and Besaratinia, A. (2012) Organ specificity of the bladder carcinogen 4-aminobiphenyl in inducing DNA damage and mutation in mice. Cancer Prev Res (Phila), 5, 299-308.
7. Nauwelaers, G., Bellamri, M., Fessard, V., Turesky, R.J. and Langouet, S. (2013) DNA adducts of the tobacco carcinogens 2-amino-9H-pyrido[2,3-b]indole and 4-aminobiphenyl are formed at environmental exposure levels and persist in human hepatocytes. Chem Res Toxicol, 26, 1367-1377.
8. Hein, D.W. (1988) Acetylator genotype and arylamine-induced carcinogenesis. Biochim Biophys Acta, 948, 37-66.
9. Murata, M., Yamashita, N., Inoue, S. and Kawanishi, S. (2000) Mechanism of oxidative DNA damage induced by carcinogenic allyl isothiocyanate. Free Radic Biol Med, 28, 797-805.
10. Hsu, T.M., Zhang, Y.J. and Santella, R.M. (1997) Immunoperoxidase quantitation of 4-aminobiphenyl- and polycyclic aromatic hydrocarbon-DNA adducts in exfoliated oral and urothelial cells of smokers and nonsmokers. Cancer Epidemiol Biomarkers Prev, 6, 193-199.
11. Tsuneoka, Y., Dalton, T.P., Miller, M.L., Clay, C.D., Shertzer, H.G., Talaska, G., Medvedovic, M. and Nebert, D.W. (2003) 4-aminobiphenyl-induced liver and urinary bladder DNA adduct formation in Cyp1a2(-/-) and Cyp1a2(+/+) mice. J Natl Cancer Inst, 95, 1227-1237.
12. Chen, T., Mittelstaedt, R.A., Beland, F.A., Heflich, R.H., Moore, M.M. and Parsons, B.L. (2005) 4-Aminobiphenyl induces liver DNA adducts in both neonatal and adult mice but induces liver mutations only in neonatal mice. Int J Cancer, 117, 182-187.
13. Wang, S., Bott, D., Tung, A., Sugamori, K.S. and Grant, D.M. (2015) Relative Contributions of CYP1A2 and CYP2E1 to the Bioactivation and Clearance of 4-Aminobiphenyl in Adult Mice. Drug Metab Dispos, 43, 916-921.
14. Blake, D.R., Allen, R.E. and Lunec, J. (1987) Free radicals in biological systems--a review orientated to inflammatory processes. Br Med Bull, 43, 371-385.
15. Kamarajan, P. and Chao, C.C. (2000) UV-induced apoptosis in resistant HeLa cells. Biosci Rep, 20, 99-108.
16. Al-Mohanna, M.A., Al-Khodairy, F.M., Krezolek, Z., Bertilsson, P.A., Al-Houssein, K.A. and Aboussekhra, A. (2001) p53 is dispensable for UV-induced cell cycle arrest at late G(1) in mammalian cells. Carcinogenesis, 22, 573-578.
17. Pavey, S., Russell, T. and Gabrielli, B. (2001) G2 phase cell cycle arrest in human skin following UV irradiation. Oncogene, 20, 6103-6110.
18. Gentile, M., Latonen, L. and Laiho, M. (2003) Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses. Nucleic Acids Res, 31, 4779-4790.
19. Chen, L.C., Chueh, T.C., Tuan, Y.F., Chen, C.C., Chien, C.C., Lee, H.Y. and Chen, S.C. (2015) Activation of MAPK pathways and downstream transcription factors in 2-aminobiphenyl-induced apoptosis. Environ Toxicol, 30, 205-211.
20. Hou, Z., Zhang, Y., Deng, K., Chen, Y., Li, X., Deng, X., Cheng, Z., Lian, H., Li, C. and Lin, J. (2015) UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway. ACS Nano, 9, 2584-2599.
21. Shi, X., Mao, Y., Knapton, A.D., Ding, M., Rojanasakul, Y., Gannett, P.M., Dalal, N. and Liu, K. (1994) Reaction of Cr(VI) with ascorbate and hydrogen peroxide generates hydroxyl radicals and causes DNA damage: role of a Cr(IV)-mediated Fenton-like reaction. Carcinogenesis, 15, 2475-2478.
22. Altieri, F., Grillo, C., Maceroni, M. and Chichiarelli, S. (2008) DNA damage and repair: from molecular mechanisms to health implications. Antioxid Redox Signal, 10, 891-937.
23. Douki, T., Martini, R., Ravanat, J.L., Turesky, R.J. and Cadet, J. (1997) Measurement of 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 8-oxo-7,8-dihydroguanine in isolated DNA exposed to gamma radiation in aqueous solution. Carcinogenesis, 18, 2385-2391.
24. Pouget, J.P., Douki, T., Richard, M.J. and Cadet, J. (2000) DNA damage induced in cells by gamma and UVA radiation as measured by HPLC/GC-MS and HPLC-EC and Comet assay. Chem Res Toxicol, 13, 541-549.
25. Jiranusornkul, S. and Laughton, C.A. (2008) Destabilization of DNA duplexes by oxidative damage at guanine: implications for lesion recognition and repair. J R Soc Interface, 5 Suppl 3, S191-198.
26. Radak, Z. and Boldogh, I. (2010) 8-Oxo-7,8-dihydroguanine: links to gene expression, aging, and defense against oxidative stress. Free Radic Biol Med, 49, 587-596.
27. Wang, S.C., Chung, J.G., Chen, C.H. and Chen, S.C. (2006) 2- and 4-Aminobiphenyls induce oxidative DNA damage in human hepatoma (Hep G2) cells via different mechanisms. Mutat Res, 593, 9-21.
28. House, N.C., Koch, M.R. and Freudenreich, C.H. (2014) Chromatin modifications and DNA repair: beyond double-strand breaks. Front Genet, 5, 296.
29. Ajimura, M., Leem, S.H. and Ogawa, H. (1993) Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae. Genetics, 133, 51-66.
30. Moore, J.K. and Haber, J.E. (1996) Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol, 16, 2164-2173.
31. Fishman-Lobell, J., Rudin, N. and Haber, J.E. (1992) Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol Cell Biol, 12, 1292-1303.
32. Goedecke, W., Vielmetter, W. and Pfeiffer, P. (1992) Activation of a system for the joining of nonhomologous DNA ends during Xenopus egg maturation. Mol Cell Biol, 12, 811-816.
33. Manolis, K.G., Nimmo, E.R., Hartsuiker, E., Carr, A.M., Jeggo, P.A. and Allshire, R.C. (2001) Novel functional requirements for non-homologous DNA end joining in Schizosaccharomyces pombe. EMBO J, 20, 210-221.
34. Chang, T.C., Wentzel, E.A., Kent, O.A., Ramachandran, K., Mullendore, M., Lee, K.H., Feldmann, G., Yamakuchi, M., Ferlito, M., Lowenstein, C.J. et al. (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell, 26, 745-752.
35. Corney, D.C., Flesken-Nikitin, A., Godwin, A.K., Wang, W. and Nikitin, A.Y. (2007) MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res, 67, 8433-8438.
36. He, L., He, X., Lim, L.P., de Stanchina, E., Xuan, Z., Liang, Y., Xue, W., Zender, L., Magnus, J., Ridzon, D. et al. (2007) A microRNA component of the p53 tumour suppressor network. Nature, 447, 1130-1134.
37. Zhang, X., Wan, G., Berger, F.G., He, X. and Lu, X. (2011) The ATM kinase induces microRNA biogenesis in the DNA damage response. Mol Cell, 41, 371-383.
38. Crosby, M.E., Kulshreshtha, R., Ivan, M. and Glazer, P.M. (2009) MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res, 69, 1221-1229.
39. Kulshreshtha, R., Ferracin, M., Wojcik, S.E., Garzon, R., Alder, H., Agosto-Perez, F.J., Davuluri, R., Liu, C.G., Croce, C.M., Negrini, M. et al. (2007) A microRNA signature of hypoxia. Mol Cell Biol, 27, 1859-1867.
40. Cheng, C., Li, W., Zhang, Z., Yoshimura, S., Hao, Q., Zhang, C. and Wang, Z. (2013) MicroRNA-144 is regulated by activator protein-1 (AP-1) and decreases expression of Alzheimer disease-related a disintegrin and metalloprotease 10 (ADAM10). J Biol Chem, 288, 13748-13761.
41. Taganov, K.D., Boldin, M.P., Chang, K.J. and Baltimore, D. (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A, 103, 12481-12486.
42. Zhu, Q., Wang, Z., Hu, Y., Li, J., Li, X., Zhou, L. and Huang, Y. (2012) miR-21 promotes migration and invasion by the miR-21-PDCD4-AP-1 feedback loop in human hepatocellular carcinoma. Oncol Rep, 27, 1660-1668.
43. Mitra, R., Sun, J. and Zhao, Z. (2015) microRNA regulation in cancer: One arm or two arms? Int J Cancer.
44. Wightman, B., Ha, I. and Ruvkun, G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75, 855-862.
45. Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R. and Ruvkun, G. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403, 901-906.
46. Abrahante, J.E., Daul, A.L., Li, M., Volk, M.L., Tennessen, J.M., Miller, E.A. and Rougvie, A.E. (2003) The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev Cell, 4, 625-637.
47. Lin, S.Y., Johnson, S.M., Abraham, M., Vella, M.C., Pasquinelli, A., Gamberi, C., Gottlieb, E. and Slack, F.J. (2003) The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev Cell, 4, 639-650.
48. Kim, V.N. (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol, 6, 376-385.
49. Doench, J.G. and Sharp, P.A. (2004) Specificity of microRNA target selection in translational repression. Genes Dev, 18, 504-511.
50. He, L. and Hannon, G.J. (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet, 5, 522-531.
51. Grimson, A., Farh, K.K., Johnston, W.K., Garrett-Engele, P., Lim, L.P. and Bartel, D.P. (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell, 27, 91-105.
52. Liu, X., Jiang, F., Kalidas, S., Smith, D. and Liu, Q. (2006) Dicer-2 and R2D2 coordinately bind siRNA to promote assembly of the siRISC complexes. RNA, 12, 1514-1520.
53. Vinson, R.K. and Hales, B.F. (2003) Genotoxic stress response gene expression in the mid-organogenesis rat conceptus. Toxicol Sci, 74, 157-164.
54. Ishikawa, Y., Gohda, T., Tanimoto, M., Omote, K., Furukawa, M., Yamaguchi, S., Murakoshi, M., Hagiwara, S., Horikoshi, S., Funabiki, K. et al. (2012) Effect of exercise on kidney function, oxidative stress, and inflammation in type 2 diabetic KK-A(y) mice. Exp Diabetes Res, 2012, 702948.
55. Antognelli, C., Palumbo, I., Aristei, C. and Talesa, V.N. (2014) Glyoxalase I inhibition induces apoptosis in irradiated MCF-7 cells via a novel mechanism involving Hsp27, p53 and NF-kappaB. Br J Cancer, 111, 395-406.
56. Chen, A., Huang, X., Xue, Z., Cao, D., Huang, K., Chen, J., Pan, Y. and Gao, Y. (2015) The Role of p21 in Apoptosis, Proliferation, Cell Cycle Arrest, and Antioxidant Activity in UVB-Irradiated Human HaCaT Keratinocytes. Med Sci Monit Basic Res, 21, 86-95.
57. Chen, W.T., Ebelt, N.D., Stracker, T.H., Xhemalce, B., Van Den Berg, C.L. and Miller, K.M. (2015) ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion. Elife, 4.
58. Kawase, T., Kamiya, M., Hayama, K., Nagata, M., Okuda, K., Yoshie, H., Burns, D.M., Tsuchimochi, M. and Nakata, K. (2015) X-ray and ultraviolet C irradiation-induced gamma-H2AX and p53 formation in normal human periosteal cells in vitro: markers for quality control in cell therapy. Cytotherapy, 17, 112-123.
59. Repesse, X., Moldes, M., Muscat, A., Vatier, C., Chetrite, G., Gille, T., Planes, C., Filip, A., Mercier, N., Duranteau, J. et al. (2015) Hypoxia inhibits semicarbazide-sensitive amine oxidase activity in adipocytes. Mol Cell Endocrinol, 411, 58-66.
60. Ypsilantis, P., Lambropoulou, M., Tentes, I., Chryssidou, M., Georgantas, T. and Simopoulos, C. (2015) Room air versus carbon dioxide pneumoperitoneum: effects on oxidative state, apoptosis and histology of splanchnic organs. Surg Endosc.
61. Chanyshev, M.D., Kosorotikov, N.I., Titov, S.E., Kolesnikov, N.N. and Gulyaeva, L.F. (2014) Expression of microRNAs, CYP1A1 and CYP2B1 in the livers and ovaries of female rats treated with DDT and PAHs. Life Sci, 103, 95-100.
62. Deng, Q., Dai, X., Guo, H., Huang, S., Kuang, D., Feng, J., Wang, T., Zhang, W., Huang, K., Hu, D. et al. (2014) Polycyclic aromatic hydrocarbons-associated microRNAs and their interactions with the environment: influences on oxidative DNA damage and lipid peroxidation in coke oven workers. Environ Sci Technol, 48, 4120-4128.
63. Deng, Q., Huang, S., Zhang, X., Zhang, W., Feng, J., Wang, T., Hu, D., Guan, L., Li, J., Dai, X. et al. (2014) Plasma microRNA expression and micronuclei frequency in workers exposed to polycyclic aromatic hydrocarbons. Environ Health Perspect, 122, 719-725.
64. Chu, D., Zhao, Z., Li, Y., Li, J., Zheng, J., Wang, W., Zhao, Q. and Ji, G. (2014) Increased microRNA-630 expression in gastric cancer is associated with poor overall survival. PLoS One, 9, e90526.
65. Mosakhani, N., Pazzaglia, L., Benassi, M.S., Borze, I., Quattrini, I., Picci, P. and Knuutila, S. (2013) MicroRNA expression profiles in metastatic and non-metastatic giant cell tumor of bone. Histol Histopathol, 28, 671-678.
66. Griffiths-Jones, S., Grocock, R.J., van Dongen, S., Bateman, A. and Enright, A.J. (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res, 34, D140-144.
67. Ruby, J.G., Stark, A., Johnston, W.K., Kellis, M., Bartel, D.P. and Lai, E.C. (2007) Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res, 17, 1850-1864.
68. Griffiths-Jones, S., Saini, H.K., van Dongen, S. and Enright, A.J. (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res, 36, D154-158.
69. Kucherlapati, M., Nguyen, A., Kuraguchi, M., Yang, K., Fan, K., Bronson, R., Wei, K., Lipkin, M., Edelmann, W. and Kucherlapati, R. (2007) Tumor progression in Apc(1638N) mice with Exo1 and Fen1 deficiencies. Oncogene, 26, 6297-6306.
70. Liu, J.J., Lin, X.J., Yang, X.J., Zhou, L., He, S., Zhuang, S.M. and Yang, J. (2014) A novel AP-1/miR-101 regulatory feedback loop and its implication in the migration and invasion of hepatoma cells. Nucleic Acids Res, 42, 12041-12051.
71. Patel, S.A., Bhambra, U., Charalambous, M.P., David, R.M., Edwards, R.J., Lightfoot, T., Boobis, A.R. and Gooderham, N.J. (2014) Interleukin-6 mediated upregulation of CYP1B1 and CYP2E1 in colorectal cancer involves DNA methylation, miR27b and STAT3. Br J Cancer, 111, 2287-2296.
72. Xie, Y.F., Shu, R., Jiang, S.Y., Song, Z.C., Guo, Q.M., Dong, J.C. and Lin, Z.K. (2014) miRNA-146 negatively regulates the production of pro-inflammatory cytokines via NF-kappaB signalling in human gingival fibroblasts. J Inflamm (Lond), 11, 38.
73. Shah, N.M., Zaitseva, L., Bowles, K.M., MacEwan, D.J. and Rushworth, S.A. (2015) NRF2-driven miR-125B1 and miR-29B1 transcriptional regulation controls a novel anti-apoptotic miRNA regulatory network for AML survival. Cell Death Differ, 22, 654-664.
74. Haines, J.W., Coster, M.R., Adam, J., Cheeseman, M., Ainsbury, E.A., Thacker, J. and Bouffler, S.D. (2010) Xrcc2 modulates spontaneous and radiation-induced tumorigenesis in Apcmin/+ mice. Mol Cancer Res, 8, 1227-1233.
75. Wang, Q., Wang, Y., Du, L., Xu, C., Sun, Y., Yang, B., Sun, Z., Fu, Y., Cai, L., Fan, S. et al. (2014) shRNA-mediated XRCC2 gene knockdown efficiently sensitizes colon tumor cells to X-ray irradiation in vitro and in vivo. Int J Mol Sci, 15, 2157-2171.
76. Galluzzi, L., Morselli, E., Vitale, I., Kepp, O., Senovilla, L., Criollo, A., Servant, N., Paccard, C., Hupe, P., Robert, T. et al. (2010) miR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Res, 70, 1793-1803.
77. Farhana, L., Dawson, M.I., Murshed, F., Das, J.K., Rishi, A.K. and Fontana, J.A. (2013) Upregulation of miR-150* and miR-630 induces apoptosis in pancreatic cancer cells by targeting IGF-1R. PLoS One, 8, e61015.
78. Cao, J.X., Lu, Y., Qi, J.J., An, G.S., Mao, Z.B., Jia, H.T., Li, S.Y. and Ni, J.H. (2014) MiR-630 inhibits proliferation by targeting CDC7 kinase, but maintains the apoptotic balance by targeting multiple modulators in human lung cancer A549 cells. Cell Death Dis, 5, e1426.
79. Wang, H.T. and Wang, C.Q. (2015) [27-O-(E)-p-coumaric acyl ursolic acid via JNK/SAPK signal pathway regulates apoptosis of human breast cancer MDA-MB-231 cell line]. Zhongguo Zhong Yao Za Zhi, 40, 722-726.
80. Zhang, T.T., Yang, L. and Jiang, J.G. (2015) Effects of thonningianin A in natural foods on apoptosis and cell cycle arrest of HepG-2 human hepatocellular carcinoma cells. Food Funct.
81. Zhu, G.H., Dai, H.P., Shen, Q., Ji, O., Zhang, Q. and Zhai, Y.L. (2015) Curcumin induces apoptosis and suppresses invasion through MAPK and MMP signaling in human monocytic leukemia SHI-1 cells. Pharm Biol, 1-9.
82. Liu, R.L., Dong, Y., Deng, Y.Z., Wang, W.J. and Li, W.D. (2015) Tumor suppressor miR-145 reverses drug resistance by directly targeting DNA damage-related gene RAD18 in colorectal cancer. Tumour Biol.
83. Orta, M.L., Calderon-Montano, J.M., Dominguez, I., Pastor, N., Burgos-Moron, E., Lopez-Lazaro, M., Cortes, F., Mateos, S. and Helleday, T. (2013) 5-Aza-2′-deoxycytidine causes replication lesions that require Fanconi anemia-dependent homologous recombination for repair. Nucleic Acids Res, 41, 5827-5836.
84. Makena, P. and Chung, K.T. (2007) Evidence that 4-aminobiphenyl, benzidine, and benzidine congeners produce genotoxicity through reactive oxygen species. Environ Mol Mutagen, 48, 404-413.
指導教授 陳師慶(Ssu-Ching Chen) 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明