博碩士論文 102224018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.133.144.197
姓名 黃暐婷(Wei-Ting Huang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 TNT經由ROS介導之內質網壓力及粒線體失衡誘導人類肝臟細胞凋亡
(2, 4, 6-Trinitrotoluene induces apoptosis by ROS-mediated endoplasmic reticulum (ER) stress and mitochondrial dysfunction in HepG2 cells)
相關論文
★ 4-aminobiphenyl誘導HepG2細胞中的microRNAs表現 並藉由microRNAs調控DNA修復機制★ 研究Dicrotophos對HepG2細胞毒性之分子機制:CSA蛋白質在毒性扮演之角色
★ Pseudomonas sp. A46全基因組分析與重金屬復育基因工程菌開發★ 4-Aminobiphenyl 調控 miR-630 抑制 RAD18 表現誘導 Hep3B 細胞產生氧化性 DNA 損傷
★ 三硝基甲苯之毒理機制及生物降解暨多氯乙烯汙染模場生物整治★ 探討人類肝癌細胞HepG2經4-氨基聯苯處理過後miRNA-630對於同源重組修復相關蛋白MCM8的調控機制
★ 假單胞菌Pseudomonas sp. A46之基因工程菌開發及重金屬之生物累積和生物吸附潛力探討★ 開發新穎性包埋Dehalococcoides mccartyi及Clostridium butyricum之長效脫氯膠體
★ 探討DNA損傷反應與慢性暴露4-胺基聯苯產生之肝臟毒性★ 以Lpp-OmpA工法建構新穎性基因工程菌強化鎘生物復育能力
★ 建構脫鹵球菌與固氮菌共培養系統促進氮源缺乏環境下的還原脫氯作用★ 硒代胱氨酸通過誘導人肝細胞癌中的 DNA 損傷和抑制 DNA 修復途徑來增強順鉑敏感性
★ 轉錄體分析 Acetobacterium woodii 降解1,1,1-三氯乙烷機制並用以協助 Dehalococcoides進行還原脫氯★ 以宏觀基因體分析新穎 Candidatus Dehalobacterium strain DLY 降解二氯甲烷機制
★ 研究雙特松對HepG2細胞之DNA修復的影響★ 金屬硫蛋白在大腸桿菌的表達與金屬累積能力測試
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 三硝基甲苯 (2, 4, 6,-trinitrotoluene,TNT),又稱作黃色炸藥。目前被人們廣泛使用於工業開發、軍事等用途。但有許多文獻指出,TNT在其製造、爆炸等過程中,恐會對環境或是生物體造成汙染,引發造血、生殖、神經系統方面的損傷,甚至是肝癌的發生。然而,TNT造成肝毒性的分子機制仍需要被進一步探討。因此,本研究選擇使用人類肝癌細胞株(HepG2),觀察TNT對其所造成之影響,並更進一步探討其致毒機制。
在本研究中,我們發現TNT會導致細胞存活率明顯降低,且有基因損傷(DNA damage)的發生。利用RNA-seq觀察經由不同濃度TNT處理24小時前、後的細胞基因發現TNT會誘導細胞基因發生變異。而參考KEGG資料庫顯示:其恐造成包括線粒體功能障礙、內質網壓力和細胞生長週期停滯等影響。因此,本研究利用JC-1染劑測定粒線體膜電位,證實了TNT確實會破壞粒線體膜電位,導致粒線體功能障礙的發生。此外,TNT也會造成蛋白Bax/Bcl-2的比率上升、procaspase 9/3的表現量降低,促使細胞凋亡。而藉由觀察到內質網壓力信號基因BiP、PDI、PERK、CHOP和oxidase 1 like α (Erol-Lα)信號的提升,也證實了內質網壓力的發生。
最後,我們也研究了活性氧化物質(ROS)對於TNT誘導細胞毒性的作用機制,TNT進入細胞後在代謝的過程中,恐產生大量的ROS。除此之外,轉錄因子CHOP能誘導Ero1α的轉錄作用,進一步催化PDI的再氧化,增加胞內的氧化壓力。而藉由抗氧化劑N-acetyl-cysteine (NAC)的預處理能有效降低基因損傷、細胞凋亡和內質網傳遞途境訊號異常的比率。TNT所造成的HepG2細胞DNA損傷,是由於ROS所引起的內質網壓力和粒線體功能失衡所造成。
摘要(英) 2,4,6-Trinitrotoluene (TNT) has been commonly used as an explosive throughout the world. TNT was reported to cause numerous adverse effects including liver cancer. However, the detailed molecular mechanisms underlying TNT-induced liver toxicity still need to be elucidated. At first, we found that TNT significantly decreased cell viability and induced DNA damage. Thereafter, RNA-seq was utilized to detect the differential genes in comparison with cells before and after TNT (30 g/mL and 80 g/mL) treatment for 24 h. It was observed that TNT induced many differential genes, and the Kyoto Encyclopedia of Genes and Genome (KEGG) analysis showed that the diverse biological functions and metabolic pathways affected included mitochondrial dysfunction, ER signaling stress, and cell cycle arrest. Mitochondrial dysfunction was evidenced by the loss of mitochondrial membrane potential followed by the increase in the ratio of Bax/Bcl-2 and caspase 3/7 activity as well as the decreased expression of procaspase 9/3, indicating that apoptosis had occurred. In addition, the expressions of some ER stress-related signaling genes and proteins including BiP, PDI, PERK, CHOP, and oxidase 1 like α (Erol-Lα) had increased. Next, we investigated the role of ROS in TNT-induced cellular toxicity. The levels of DNA damage, apoptosis, and ER stress-signaling pathways were alleviated when the cells were pretreated with the ROS scavenger N-acetyl-cysteine (NAC). Notably, we also demonstrated that TNT induced ROS overproduction. These results indicated that TNT caused the ROS-dependent apoptosis via ER stress and mitochondrial dysfunction.
關鍵字(中) ★ 2,4,6-三硝基甲苯
★ 細胞凋亡
★ 線粒體功能障礙
★ 內質網壓力
★ 氧化壓力
關鍵字(英) ★ 2,4,6-trinitromethylbenzene
★ Apoptosis
★ Mitochondrial dysfunction
★ ER stress
★ ROS
論文目次 中文摘要 V
Abstract VI
目錄 VIII
圖目錄 X
表目錄 XIII
第一章 緒論 1
1-1 三硝基甲苯 (2, 4, 6,-trinitrotoluene,TNT) 介紹 1
1-2 TNT的毒理特性 2
1-2-1 TNT之毒性 2
1-2-2 TNT之致癌性 2
1-2-3 TNT之基因毒性 3
1-3 氧化壓力 (Oxidative stress) 4
1-3-1 自由基 (Free radicals)介紹 4
1-3-2 TNT造成氧化壓力導致基因毒性之探討 5
1-3-3 TNT造成細胞氧化壓力與細胞毒性之探討 6
第二章 實驗目的和實驗架構 9
第三章 材料與方法 10
3-1 實驗材料 10
3-1-1 使用儀器及廠牌 10
3-1-2 常用藥品與試劑 10
3-2 實驗方法 13
3-2-1 細胞株與細胞培養(Cell cuture) 13
3-2-2 細胞計數(Trypan blue staining and cell counting) 15
3-2-3 細胞存活率分析(MTT assay) 16
3-2-4 細胞內活性氧化物質測定(Reactive oxygen species, ROS) 17
3-2-5 測定DNA損傷程度之彗星試驗(Comet assay) 19
3-2-6 細胞total RNA抽取 (RNA isolation) 21
3-2-7 反轉錄作用(Reverse Transcription) 22
3-2-8 DNA/RNA電泳 23
3-2-9 細胞總蛋白質萃取( Protein extraction) 24
3-2-10 蛋白質濃度測定(RC.DC protein assay) 25
3-2-11 蛋白質電泳 26
3-2-12 蛋白質轉漬: 28
3-2-13 西方免疫墨點法 (Western immune blotting) 28
3-2-14 細胞內粒線體膜電位分析 30
3-2-15 即時定量聚合酶連鎖反應 (qRT-PCR) 31
3-2-16 次世代定序(Next Generation Sequencing, NGS)………………………..33
第四章 結果 344
4-1 TNT對於HepG2細胞之細胞存活率及造成細胞凋亡和DNA損傷之影響 34
4-2 TNT誘導內質網壓力、粒線體功能障礙和影響其他生理功能及路徑 34
4-3 TNT在HepG2細胞中誘導內質網壓力 35
4-4 TNT藉由粒線體功能障礙途徑誘導細胞凋亡 35
4-5 ROS的生成在DNA損傷、內質網壓力、粒線體功能障礙、細胞凋亡和死亡所扮演的角色 36
第五章 討論 37
第六章 圖表 41
第七章 參考文獻 72
第八章 附錄 78
參考文獻 1. Green, A., Moore, D., Farrar and Daniel. (1999) Chronic toxicity of 2,4,6-trinitrotoluene to a marine polychaete and an estuarine amphipod. Environmental Toxicology and Chemistry, 18, 1783-1790.
2. Conder, J.M., La Point, T.W., Steevens, J.A. and Lotufo, G.R. (2004) Recommendations for the assessment of TNT toxicity in sediment. Environmental Toxicology and Chemistry, 23, 141-149.
3. Stenuit, B. and Agathos, S. (2010) Microbial 2,4,6-trinitrotoluene degradation: could we learn from (bio)chemistry for bioremediation and vice versa? Appl Microbiol Biotechnol, 88, 1043-1064.
4. Chien, C.-C., Kao, C.-M., Chen, D.-Y., Chen, S.C. and Chen, C.-C. (2014) Biotransformation of trinitrotoluene (TNT) by Pseudomonas spp. isolated from a TNT-contaminated environment. Environmental Toxicology and Chemistry, 33, 1059-1063.
5. Bolt, H.M., Degen, G.H., Dorn, S.B., Plottner, S. and Harth, V. (2006) Genotoxicity and potential carcinogenicity of 2,4,6-TNT trinitrotoluene: structural and toxicological considerations. Reviews on environmental health, 21, 217-228.
6. Bader, M., Göen, T., Müller, J. and Angerer, J. (1998) Analysis of nitroaromatic compounds in urine by gas chromatography–mass spectrometry for the biological monitoring of explosives. Journal of Chromatography B: Biomedical Sciences and Applications, 710, 91-99.
7. Lachance, B., Renoux, A.Y., Sarrazin, M., Hawari, J. and Sunahara, G.I. (2004) Toxicity and bioaccumulation of reduced TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil. Chemosphere, 55, 1339-1348.
8. Lachance, B., Robidoux, P.Y., Hawari, J., Ampleman, G., Thiboutot, S. and Sunahara, G.I. (1999) Cytotoxic and genotoxic effects of energetic compounds on bacterial and mammalian cells in vitro1. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 444, 25-39.
9. Robidoux, P.Y., Hawari, J., Thiboutot, S., Ampleman, G. and Sunahara, G.I. (1999) Acute Toxicity of 2,4,6-Trinitrotoluene in Earthworm (Eisenia andrei). Ecotoxicology and Environmental Safety, 44, 311-321.
10. Steevens, J.A., Duke, B.M., Lotufo, G.R. and Bridges, T.S. (2002) Toxicity of the explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in sediments to Chironomus tentans and Hyalella azteca: Low-dose hormesis and high-dose mortality. Environmental Toxicology and Chemistry, 21, 1475-1482.
11. Della Torre, C., Corsi, I., Arukwe, A., Alcaro, L., Amato, E. and Focardi, S. (2008) Effects of 2,4,6-trinitrotoluene (TNT) on phase I and phase II biotransformation enzymes in European eel Anguilla anguilla (Linnaeus, 1758). Marine Environmental Research, 66, 9-11.
12. Sabbioni, G., Sepai, O., Norppa, H., Yan, H., Hirvonen, A., Zheng, Y., Järventaus, H., Bäck, B., Brooks, L.R., Warren, S.H. et al. (2007) Comparison of biomarkers in workers exposed to 2,4,6-trinitrotoluene. Biomarkers, 12, 21-37.
13. Vatsis, K.P., Weber, W.W., Bell, D.A., Dupret, J.-M., Evans, D.A.P., Grant, D.M., Hein, D.W., Lin, H.J., Meyer, U.A., Relling, M.V. et al. (1995) Nomenclature for N-acetyltransferases. Pharmacogenetics and Genomics, 5, 1-17.
14. Won, W.D., DiSalvo, L.H. and Ng, J. (1976) Toxicity and mutagenicity of 2,4,-6-trinitrotoluene and its microbial metabolites. Applied and environmental microbiology, 31, 576-580.
15. Kaplan, D.L. and Kaplan, A.M. (1982) Mutagenicity of 2,4,6-trinitrotoluene-surfactant complexes. Bulletin of environmental contamination and toxicology, 28, 33-38.
16. Spanggord, R.J., Mortelmans, K.E., Griffin, A.F. and Simmon, V.F. (1982) Mutagenicity in Salmonella typhimurium and structure-activity relationships of wastewater components emanating from the manufacture of trinitrotoluene. Environmental mutagenesis, 4, 163-179.
17. Whong, W.Z. and Edwards, G.S. (1984) Genotoxic activity of nitroaromatic explosives and related compounds in Salmonella typhimurium. Mutation research, 136, 209-215.
18. Tan, E.L., Ho, C.H., Griest, W.H. and Tyndall, R.L. (1992) Mutagenicity of trinitrotoluene and its metabolites formed during composting. Journal of toxicology and environmental health, 36, 165-175.
19. Karamova, N.S., Mynina, II, Garaeva, G.G., Ivanchenko, O.B. and Il′inskaia, O.N. (1995) [2,4,6-trinitrotoluene and 2,4-diamino-6-nitrotoluene: the absence of recA-dependent mutagenesis?]. Genetika, 31, 617-621.
20. Karamova, N.S., Il′inskaia, O.N. and Ivanchenko, O.B. (1994) [Mutagenic activity of 2,4,6-trinitrotoluene: the role of metabolizing enzymes]. Genetika, 30, 898-902.
21. Johnston, E.J., Rylott, E.L., Beynon, E., Lorenz, A., Chechik, V. and Bruce, N.C. (2015) Monodehydroascorbate reductase mediates TNT toxicity in plants. Science, 349, 1072-1075.
22. Shi, X., Mao, Y., Knapton, A.D., Ding, M., Rojanasakul, Y., Gannett, P.M., Dalal, N. and Liu, K. (1994) Reaction of Cr(VI) with ascorbate and hydrogen peroxide generates hydroxyl radicals and causes DNA damage: role of a Cr(IV)-mediated Fenton-like reaction. Carcinogenesis, 15, 2475-2478.
23. Altieri, F., Grillo, C., Maceroni, M. and Chichiarelli, S. (2008) DNA damage and repair: from molecular mechanisms to health implications. Antioxid Redox Signal, 10, 891-937.
24. Douki, T., Martini, R., Ravanat, J.L., Turesky, R.J. and Cadet, J. (1997) Measurement of 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 8-oxo-7,8-dihydroguanine in isolated DNA exposed to gamma radiation in aqueous solution. Carcinogenesis, 18, 2385-2391.
25. Pouget, J.P., Douki, T., Richard, M.J. and Cadet, J. (2000) DNA damage induced in cells by gamma and UVA radiation as measured by HPLC/GC-MS and HPLC-EC and Comet assay. Chemical research in toxicology, 13, 541-549.
26. Jiranusornkul, S. and Laughton, C.A. (2008) Destabilization of DNA duplexes by oxidative damage at guanine: implications for lesion recognition and repair. Journal of the Royal Society, Interface / the Royal Society, 5 Suppl 3, S191-198.
27. Radak, Z. and Boldogh, I. (2010) 8-Oxo-7,8-dihydroguanine: links to gene expression, aging, and defense against oxidative stress. Free Radic Biol Med, 49, 587-596.
28. Homma-Takeda, S., Hiraku, Y., Ohkuma, Y., Oikawa, S., Murata, M., Ogawa, K., Iwamuro, T., Li, S., Sun, G.F., Kumagai, Y. et al. (2002) 2,4,6-Trinitrotoluene-induced Reproductive Toxicity via Oxidative DNA Damage by its Metabolite. Free Radical Research, 36, 555-566.
29. Homma-Takeda, S., Hiraku, Y., Ohkuma, Y., Oikawa, S., Murata, M., Ogawa, K., Iwamuro, T., Li, S., Sun, G.F., Kumagai, Y. et al. (2002) 2,4,6-trinitrotoluene-induced reproductive toxicity via oxidative DNA damage by its metabolite. Free Radic Res, 36, 555-566.
30. Tchounwou, P.B., Wilson, B.A., Ishaque, A.B. and Schneider, J. (2001) Transcriptional activation of stress genes and cytotoxicity in human liver carcinoma cells (HepG2) exposed to 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene. Environmental Toxicology, 16, 209-216.
31. Kovacic, P. and Somanathan, R. (2014) Nitroaromatic compounds: Environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism. Journal of applied toxicology : JAT, 34, 810-824.
32. Šarlauskas, J., Nemeikaite-Č≐niene, A., Anusevičius, Ž., Misevičien≐, L., Julvez, M.M., Medina, M., Gomez-Moreno, C. and Č≐nas, N. (2004) Flavoenzyme-catalyzed redox cycling of hydroxylamino- and amino metabolites of 2,4,6-trinitrotoluene: implications for their cytotoxicity. Archives of Biochemistry and Biophysics, 425, 184-192.
33. Shinkai, Y., Nishihara, Y., Amamiya, M., Wakayama, T., Li, S., Kikuchi, T., Nakai, Y., Shimojo, N. and Kumagai, Y. NADPH-cytochrome P450 reductase-mediated denitration reaction of 2,4,6-trinitrotoluene to yield nitrite in mammals. Free Radical Biology and Medicine.
34. Ask, K., Décologne, N., Asare, N., Holme, J.A., Artur, Y., Pelczar, H. and Camus, P. (2004) Distribution of nitroreductive activity toward nilutamide in rat. Toxicology and Applied Pharmacology, 201, 1-9.
35. Peres, C.M. and Agathos, S.N. (2000) Biodegradation of nitroaromatic pollutants: from pathways to remediation. Biotechnology annual review, 6, 197-220.
36. Peterson, F.J., Mason, R.P., Hovsepian, J. and Holtzman, J.L. (1979) Oxygen-sensitive and -insensitive nitroreduction by Escherichia coli and rat hepatic microsomes. Journal of Biological Chemistry, 254, 4009-4014.
37. Song, L., Wang, Y., Wang, J., Yang, F., Li, X. and Wu, Y. (2015) Trinitrotoluene Induces Endoplasmic Reticulum Stress and Apoptosis in HePG2 Cells. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 21, 3434-3441.
38. Audic, S. and Claverie, J.M. (1997) The significance of digital gene expression profiles. Genome research, 7, 986-995.
39. Chen, Y.W., Yang, Y.T., Hung, D.Z., Su, C.C. and Chen, K.L. (2012) Paraquat induces lung alveolar epithelial cell apoptosis via Nrf-2-regulated mitochondrial dysfunction and ER stress. Arch Toxicol, 86, 1547-1558.
40. Hsu, L.-S., Chiou, B.-H., Hsu, T.-W., Wang, C.-C. and Chen, S.C. (2016) The regulation of transcriptome responses in zebrafish embryo exposure to triadimefon. Environmental Toxicology, n/a-n/a.
41. Arun, S. Mitochondrial Biology and Neurological Diseases. Current Neuropharmacology, 13.
42. Turrens, J.F. (1997) Superoxide production by the mitochondrial respiratory chain. Bioscience reports, 17, 3-8.
43. Zorov, D.B., Juhaszova, M. and Sollott, S.J. (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiological reviews, 94, 909-950.
44. Liu, Z., Lv, Y., Zhao, N., Guan, G. and Wang, J. (2015) Protein kinase R-like ER kinase and its role in endoplasmic reticulum stress-decided cell fate. Cell Death Dis, 6, e1822.
45. Fei, Q. and Ethell, D.W. (2008) Maneb potentiates paraquat neurotoxicity by inducing key Bcl‐2 family members. Journal of neurochemistry, 105, 2091-2097.
46. Núñez, A., Dulude, D., Jbel, M. and Rokeach, L.A. (2015) Calnexin Is Essential for Survival under Nitrogen Starvation and Stationary Phase in Schizosaccharomyces pombe. PLoS ONE, 10, e0121059.
47. Perri, E.R., Thomas, C.J., Parakh, S., Spencer, D.M. and Atkin, J.D. (2015) The Unfolded Protein Response and the Role of Protein Disulfide Isomerase in Neurodegeneration. Frontiers in cell and developmental biology, 3.
48. Č≐nas, N., Nemeikait≐-Č≐nien≐, A., Sergedien≐, E., Nivinskas, H., Anusevičius, Ž. and Šarlauskas, J. (2001) Quantitative structure–activity relationships in enzymatic single-electron reduction of nitroaromatic explosives: implications for their cytotoxicity. Biochimica et Biophysica Acta (BBA) - General Subjects, 1528, 31-38.
49. Kumagai, Y., Kikushima, M., Nakai, Y., Shimojo, N. and Kunimoto, M. (2004) Neuronal nitric oxide synthase (NNOS) catalyzes one-electron reduction of 2,4,6-trinitrotoluene, resulting in decreased nitric oxide production and increased nNOS gene expression: implication for oxidative stress. Free radical biology & medicine, 37, 350-357.
50. Vijaya Padma, V., Arul Diana Christie, S. and Ramkuma, K.M. (2007) Induction of apoptosis by ginger in HEp-2 cell line is mediated by reactive oxygen species. Basic & clinical pharmacology & toxicology, 100, 302-307.
51. Cooke, M.S., Evans, M.D., Dizdaroglu, M. and Lunec, J. (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 17, 1195-1214.
52. Rowe, L.A., Degtyareva, N. and Doetsch, P.W. (2008) DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free radical biology & medicine, 45, 1167-1177.
53. Bartkova, J., Horejsi, Z., Koed, K., Kramer, A., Tort, F., Zieger, K., Guldberg, P., Sehested, M., Nesland, J.M., Lukas, C. et al. (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature, 434, 864-870.
54. Zhou, B.B. and Elledge, S.J. (2000) The DNA damage response: putting checkpoints in perspective. Nature, 408, 433-439.
55. Schwarz, K.B., Kew, M., Klein, A., Abrams, R.A., Sitzmann, J., Jones, L., Sharma, S., Britton, R.S., Di Bisceglie, A.M. and Groopman, J. (2001) Increased hepatic oxidative DNA damage in patients with hepatocellular carcinoma. Digestive diseases and sciences, 46, 2173-2178.
56. Ichiba, M., Maeta, Y., Mukoyama, T., Saeki, T., Yasui, S., Kanbe, T., Okano, J., Tanabe, Y., Hirooka, Y., Yamada, S. et al. (2003) Expression of 8-hydroxy-2′-deoxyguanosine in chronic liver disease and hepatocellular carcinoma. Liver international : official journal of the International Association for the Study of the Liver, 23, 338-345.
57. Wu, L.L., Chiou, C.C., Chang, P.Y. and Wu, J.T. (2004) Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clinica chimica acta; international journal of clinical chemistry, 339, 1-9.
58. McBride, T.J., Preston, B.D. and Loeb, L.A. (1991) Mutagenic spectrum resulting from DNA damage by oxygen radicals. Biochemistry, 30, 207-213.
59. Waris, G. and Ahsan, H. (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. Journal of Carcinogenesis, 5, 14-14.
60. Panayi, Gabriel S. and Corrigall, Valerie M. (2014) Immunoglobulin heavy-chain-binding protein (BiP): a stress protein that has the potential to be a novel therapy for rheumatoid arthritis. Biochemical Society Transactions, 42, 1752-1755.
61. Fang, J., Seki, T. and Maeda, H. (2009) Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Advanced drug delivery reviews, 61, 290-302.
62. Kroemer, G., Dallaporta, B. and Resche-Rigon, M. (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annual review of physiology, 60, 619-642.
63. Zhou, L., Jiang, L., Xu, M., Liu, Q., Gao, N., Li, P. and Liu, E.H. (2016) Miltirone exhibits antileukemic activity by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction pathways. Scientific Reports, 6, 20585.
64. Woo, I.S., Jin, H., Kang, E.S., Kim, H.J., Lee, J.H., Chang, K.C., Park, J.-Y., Choi, W.S. and Seo, H.G. TMEM14A inhibits N-(4-hydroxyphenyl)retinamide-induced apoptosis through the stabilization of mitochondrial membrane potential. Cancer Letters, 309, 190-198.
65. Dara, L., Ji, C. and Kaplowitz, N. (2011) THE CONTRIBUTION OF ER STRESS TO LIVER DISEASES. Hepatology (Baltimore, Md.), 53, 1752-1763.
66. Ranganathan, A.C., Ojha, S., Kourtidis, A., Conklin, D.S. and Aguirre-Ghiso, J.A. (2008) Dual function of PERK in tumor cell growth arrest and survival. Cancer research, 68, 3260-3268.
67. McCullough, K.D., Martindale, J.L., Klotz, L.-O., Aw, T.-Y. and Holbrook, N.J. (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Molecular and cellular biology, 21, 1249-1259.
68. Marciniak, S.J., Yun, C.Y., Oyadomari, S., Novoa, I., Zhang, Y., Jungreis, R., Nagata, K., Harding, H.P. and Ron, D. (2004) CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes & Development, 18, 3066-3077.
69. Lu, P.D., Jousse, C., Marciniak, S.J., Zhang, Y., Novoa, I., Scheuner, D., Kaufman, R.J., Ron, D. and Harding, H.P. (2004) Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2. The EMBO journal, 23, 169-179.
70. Gross, E., Sevier, C.S., Heldman, N., Vitu, E., Bentzur, M., Kaiser, C.A., Thorpe, C. and Fass, D. (2006) Generating disulfides enzymatically: reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p. Proceedings of the National Academy of Sciences of the United States of America, 103, 299-304.
指導教授 陳師慶(Ssu-Ching Chen) 審核日期 2016-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明