博碩士論文 102224020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.118.200.136
姓名 鄭榮儀(Jung-Yi Cheng)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 水稻小分子量熱休克蛋白質- OsHSP16.9A在水稻種子耐熱性之功能分析
(Functional analysis of a rice small heat shock protein, OsHSP16.9A, in rice seed thermotolerance)
相關論文
★ 第三群LEA蛋白質表現與功能分析★ 水稻小分子量熱休克蛋白質Oshsp16.9A之N端區域功能性分析
★ 植物逆境蛋白質基因啟動子與功能分析★ 植物受溫度調控之基因的功能與機制分析
★ 錯誤褶疊蛋白質誘導之擬熱休克反應機制之探討★ 受熱與ABA調控水稻基因-OsRZFP1之生理功能分析
★ 受熱與ABA調控基因AtRZFP33之生理功能分析★ 水稻第一族小分子量熱休克蛋白質OsHSP16.9A及OsHSP18.0之生理功能分析
★ 植化物紫草素在小鼠皮膚上增加血管通透性之研究★ 蝴蝶蘭開花相關基因PaCOL2啟動子之特性分析
★ 利用水稻HSP17.3啟動子探討阿拉伯芥熱休克因子在逆境下對細胞內蛋白質反應之角色分析★ 蝴蝶蘭開花相關基因PaCOL1 啟動子之特性分析
★ 分析水稻 RING 鋅手指蛋白質 OsRZFP34 與其正向調控蛋白質之交互作用★ Oryzasin 1 在水稻種子耐熱性之功能分析
★ 水稻熱休克蛋白質OsHSP16.9A與OsHSP101之交互作用分析★ 水稻小分子量熱休克蛋白質—OsHSP16.9A關鍵胺基酸分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 小分子量熱休克蛋白質是植物體內種類最豐富的一群蛋白質,能與變性蛋白質結合,防止其沉澱而對細胞造成傷害。目前已知OsHSP16.9A與OsHSP18.0皆為水稻第一族群小分子量熱休克蛋白質的成員,分別位於第一和第三對染色體上,皆會在高溫41℃ 下被誘導表現。本研究中發現OsHSP16.9A在種子成熟時期表現於胚中,而在萌芽六天內其表現量逐漸下降。大量表現OsHSP16.9A的轉殖株(OsHSP16.9A-OE)種子具有耐熱性,且其種子的白堊質成分較少,有助於稻米品質的提升。與其胺基酸序列相似度高的基因-OsHSP18.0,其大量表現的轉殖株(OsHSP18.0-OE)種子則不具有耐熱性。我們利用OsHSP16.9A-OE之cDNA微陣列發現,參與在澱粉合成途徑中之關鍵酶的腺苷二磷酸葡萄糖焦磷酸化酶基因-OsAPL3,顯著受OsHSP16.9A誘導表現,並在電顯下觀察得知轉殖株種子osapl3的澱粉粒比野生型小且圓,OsHSP16.9A-OE+osapl3的澱粉粒則比osapl3的澱粉粒大,代表OsHSP16.9A和OsAPL3沒有直接的關聯性。最後我們利用蛋白質質譜技術與蛋白質交互作用實驗結果顯示,OsHSP101對於OsHSP16.9A幫助提升種子耐熱的功能是必須的。
摘要(英) Small heat shock proteins (sHSPs) represent the most abundant HSPs in plants, showing molecular chaperone activity to prevent thermal-induced irreversible denaturation of protein. Previous results revealed that OsHSP16.9A and OsHSP18.0, were members of the sHSP-CI gene family in rice (Oryza sativa Tainung No.67) on chromosome 1 and 3. And they were highly homologous to each other. Our study showed OsHSP16.9A accumulates during embryo maturation and persist at high levels during the 6 day following seed imbibition in the absence of heat stress. OsHSP16.9A-OE showed not only increasing thermotolerance in seeds but grain quality as compared with the WT and OsHSP18.0-OE. By cDNA microarray expression profiling, we identified OsAPL3, a enzyme (AGPase) for starch metabolism, was upregulated in OsHSP16.9A-OE seed with control and high temperature treatment. SEM analyses showed that starch granules in the OsHSP16.9A-OE+osapl3 mutants are larger in size and more angular in shape compared to the WT and osapl3 mutants by plant transformation. The results revealed that OsHSP16.9A does not directly interact with OsAPL3 in starch granule arrangement. In addition, we also found OsHSP101 interacted with OsHSP16.9A in rice seeds by Proteomic approach. Therefore, OsHSP101 is necessary for OsHSP16.9A function in thermotolerance of rice seeds.
關鍵字(中) ★ 耐熱性
★ 分子伴護子
★ 小分子量熱休克蛋白質
關鍵字(英) ★ Thermotolerance
★ Molecular chaperone
★ Small heat shock proteins
論文目次 目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 v
表目錄 vii
附錄目錄 viii
縮寫對照表 ix
壹、序論 1
貳、研究起源與目的 6
参、材料與方法 8
肆、結果 26
伍、討論 44
陸、參考文獻 47
柒、圖表 54
捌、附錄 83
參考文獻 陸、參考文獻
a. 劉依欣。2011。水稻第一族小分子量熱休克蛋白質OsHSP16.9A及OsHSP18.0之生理功能分析:第1-89頁。國立中央大學生命科學系碩士班論文,桃園,台灣。
b. 李易諠。2006。水稻小分子量熱休克蛋白質Oshsp16.9A之N端區域功能性分析:第1-45頁。國立中央大學生命科學系碩士班論文,桃園,台灣。
1. Atkinson, N. J. &Urwin, P. E. The interaction of plant biotic and abiotic stresses: From genes to the field. J. Exp. Bot. 63, 3523–3544 (2012).
2. Oa, O. F. W. Reducing Rice Seed Storage Protein Accumulation Leads to Changes in Nutrient Quality and Storage. 154, 1842–1854 (2010).
3. Anderson, J. P. Antagonistic Interaction between Abscisic Acid and Jasmonate-Ethylene Signaling Pathways Modulates Defense Gene Expression and Disease Resistance in Arabidopsis. Plant Cell Online 16, 3460–3479 (2004).
4. Asselbergh, B., Achuo, A. E., Höfte, M. &VanGijsegem, F. Abscisic acid deficiency leads to rapid activation of tomato defence responses upon infection with Erwinia chrysanthemi. Mol. Plant Pathol. 9, 11–24 (2008).
5. Beier, C. et al. Functional Plant Biology. 41, 47–48 (2014).
6. Craufurd, P. Q. &Wheeler, T. R. Climate change and the flowering time of annual crops. J. Exp. Bot. 60, 2529–2539 (2009).
7. Hatfield, J. L. &Prueger, J. H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 10, 4–10 (2015).
8. Wahid, A., Gelani, S., Ashraf, M. &Foolad, M. R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 61, 199–223 (2007).
9. Wahid, A., Gelani, S. &Ashraf, M. 植物的熱逆境 ( Plants under Heat Stress ). 1–2 (2016).
10. Waters, E. R., Garrett, J. L. &Vierling, E. Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot. 47, 325–338 (1996).
11. Ludmila Rizhsky, Hongjian Liang, Joel Shuman, Vladimir Shulaev, Sholpan Davletova, and Ron Mittler. When Defense Pathways Collide. The Response of Arabidopsis to a Combination of Drought and Heat Stress. Plant Physiol. 134, 1683–1696 (2004).
12. Kotak, S. et al. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol. 10, 310–316 (2007).
13. Masaaki Adachi, Yaohua Liu, Kyoko Fujii, Stuart K. Calderwood, Akira Nakai, Kohzoh Imai, Yasuhisa Shinomura. Oxidative stress impairs the heat stress response and delays unfolded protein recovery. PLoS One 4, (2009).
14. Sarkar, N. K., Kim, Y.-K. &Grover, A. Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 10, 393 (2009).
15. Leroux, M. R., Melki, R., Gordon, B. &Candido, E. P. M. Structure-Function Studies on Small Heat Shock Protein Oligomeric Assembly and Interaction with Unfolded Polypeptides *. 272, 24646–24656 (1997).
16. deJong, W. W., Leunissen, J. A. &Voorter, C. E. Evolution of the alpha-crystallin/small heat-shock protein family. Mol Biol Evol 10, 103–126 (1993).
17. Waters, E. R. E., Lee, G. G. J. &Vierling, E. Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot. 47, 325–338 (1996).
18. Ching-Hui Yeh, Pi-Fang Linda Chang, Kai-Wun Yeh, Wan-Chi Lin, Yih-Ming Chen, and Chu-Yung Lin. Expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance. Proc. Natl. Acad. Sci. U. S. A. 94, 10967–72 (1997).
19. Nover, L., Scharf, K. D. &Neumann, D. Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol. Cell. Biol. 3, 1648–55 (1983).
20. Bukau, B. &Horwich, A. L. The Hsp70 and Hsp60 chaperone machines. Cell 92, 351–366 (1998).
21. Hartl, F. U. &Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–8 (2002).
22. Löw, D., Brändle, K., Nover, L. &Forreiter, C. Cytosolic heat-stress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo. Planta 211, 575–82 (2000).
23. Downs, C. A. &Heckathorn, S. A. The mitochondrial small heat-shock protein protects NADH:ubiquinone oxidoreductase of the electron transport chain during heat stress in plants. FEBS Lett. 430, 246–250 (1998).
24. Xinhai Chen, Shoukai Lin,Qiulin Liu,Jian Huang, Wenfeng Zhang,Jun Lin,Yongfei Wang, Yuqin Ke,Huaqin He. Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress. Biochim. Biophys. Acta 1844, 818–28 (2014).
25. Hartman, J. J. &Vale, R. D. Microtubule disassembly by ATP-dependent oligomerization of the AAA enzyme katanin. Science (80-. ). 286, 782–785 (1999).
26. Wehmeyer, N. &Vierling, E. The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol. 122, 1099–1108 (2000).
27. Scharf, K. D. et al. The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol Cell Biol 18, 2240–51 (1998).
28. William B. Gurley. HSP101: a key component for the acquisition of thermotolerance in plants. Plant Cell 12, 457–460 (2000).
29. Walker, J. E., Saraste, M., Runswick, M. &Gay, N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945–951 (1982).
30. Hong, S.-W. Arabidopsis hot Mutants Define Multiple Functions Required for Acclimation to High Temperatures. Plant Physiol. 132, 757–767 (2003).
31. Wang, W., Vinocur, B., Shoseyov, O. &Altman, A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9, 244–252 (2004).
32. Yamakawa, H., Hirose, T., Kuroda, M. &Yamaguchi, T. Comprehensive Expression Profiling of Rice Grain Filling-Related Genes under High Temperature Using DNA Microarray. Plant Physiol. 144, 258–277 (2007).
33. Khush, G. S. Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35, 25–34 (1997).
34. Okawa, S., Makino, A. &Mae, T. Effect of irradiance on the partitioning of assimilated carbon during the early phase of grain filling in rice. Ann. Bot. 92, 357–364 (2003).
35. Botany, E. Temperature Effects on Rice at Elevated CO 2 Concentration. 43, 959–964 (2009).
36. Shaobing Peng, Jianliang Huang, John E. Sheehy, Rebecca C. Laza, Romeo M. Visperas, Xuhua Zhong, Grace S. Centeno, Gurdev S. Khush, and Kenneth G. Cassman. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. U. S. A. 101, 9971–9975 (2004).
37. International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 436, 793–800 (2005).
38. Guan, J. C. et al. Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant Mol. Biol. 56, 795–809 (2004).
39. Wehmeyer, N. The Expression of Small Heat Shock Proteins in Seeds Responds to Discrete Developmental Signals and Suggests a General Protective Role in Desiccation Tolerance. Plant Physiol. 122, 1099–1108 (2000).
40. Koornneef, M., Hanhart, C. J., Hilhorst, H. W. &Karssen, C. M. In Vivo Inhibition of Seed Development and Reserve Protein Accumulation in Recombinants of Abscisic Acid Biosynthesis and Responsiveness Mutants in Arabidopsis thaliana. Plant Physiol. 90, 463–469 (1989).
41. Lovegrove, A. &Hooley, R. Gibberellin and abscisic acid signalling in aleurone. Trends Plant Sci. 5, 102–110 (2000).
42. Ziegler, P. Cereal Beta-Amylases. J. Cereal Sci. 29, 195–204 (1999).
43. Nandi, S., Das, G. &Sen-mandi, S. β-Amylase activity as an index for germination potential in rice. Annals of Botany 75, 463–467 (1995).
44. Bethke, P. C., Badger, M. R. &Jones, R. L. Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16, 332–341 (2004).
45. García-Mata, C. &Lamattina, L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol. 126, 1196–1204 (2001).
46. Neill, S. J., Desikan, R., Clarke, A. &Hancock, J. T. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol. 128, 13–16 (2002).
47. Bethke, P. C., Libourel, I. G. L. &Jones, R. L. Nitric oxide reduces seed dormancy in Arabidopsis. J. Exp. Bot. 57, 517–526 (2006).
48. Bethke, P. C., Gubler, F., Jacobsen, J.V. &Jones, R. L. Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta 219, 847–855 (2004).
49. Zhang, H., Shen, W.-B. &Xu, L.-L. Effects of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolisms under osmotic stress. Acta Botanica Sinica 45, 901–905 (2003).
50. Chin-Ju Lin, Chia-Yu Li, Shao-Kai Lin, Fan-Hsuan Yang, Ji-Jwo Huang, Yun-Hua Liu, and Huu-Sheng Lur. Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.). J. Agric. Food Chem. 58, 10545–52 (2010).
51. Chun, A., Song, J., Kim, K.-J. &Lee, H.-J. Quality of Head and Chalky Rice and Deterioration of Eating Quality by Chalky Rice. J. Crop Sci. Biotech 12, 239–244 (2009).
52. Bautista, R. C., Siebenmorgen, T. J. &Counce, P. A. Rice Kernel Chalkiness and Milling Quality Relationship of Selected Cultivars. B.R. Wells Rice Res. Stud. 2009 220–229 (2010).
53. Cheng, F. M., Zhong, L. J., Wang, F. &Zhang, G. P. Differences in cooking and eating properties between chalky and translucent parts in rice grains. Food Chem. 90, 39–46 (2005).
54. Denyer, K., Dunlap, F., Thorbj~rnsen ’, T., Keeling, P. &Smith, A. M. The Major Form of ADP-Glucose Pyrophosphorylase in Maize Endosperm 1s Extra-Plastidial. Plant Physiol. 112, 779–785 (1996).
55. Fritzius, T., Aeschbacher, R., Wiemken, a &Wingler, a. Induction of ApL3 expression by trehalose complements the starch-deficient Arabidopsis mutant adg2-1 lacking ApL1, the large subunit of ADP-glucose pyrophosphorylase. Plant Physiol. 126, 883–889 (2001).
56. Tagashira, Y., Shimizu, T., Miyamoto, M., Nishida, S. &Yoshida, K. Overexpression of a Gene Involved in Phytic Acid Biosynthesis Substantially Increases Phytic Acid and Total Phosphorus in Rice Seeds. Plants 4, 196–208 (2015).
57. Zhixi Tian, Qian Qian, Qiaoquan Liu, Meixian Yan, Xinfang Liu, Changjie Yan, Guifu Liu, Zhenyu Gao, Shuzhu Tang, Dali Zeng, Yonghong Wang, Jianming Yu, Minghong Gu, and Jiayang Li. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc Natl Acad Sci U S A 106, 21760–21765 (2009).
58. Fred Rook, Fiona Corke, Roderick Card, Georg Munz, Caroline Smith, Michael W. Bevan. Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J. 26, 421–433 (2001).
59. Akihiro, T., Mizuno, K. &Fujimura, T. Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA. Plant Cell Physiol. 46, 937–946 (2005).
60. Andre, C., Froehlich, J. E., Moll, M. R. &Benning, C. A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. Plant Cell 19, 2006–2022 (2007).
61. Zhang, Y. et al. Downregulation of OsPK1, a cytosolic pyruvate kinase, by T-DNA insertion causes dwarfism and panicle enclosure in rice. Planta 235, 25–38 (2012).
62. Hou, F. Y., Huang, J., Yu, S. L. &Zhang, H. S. The 6-phosphogluconate dehydrogenase genes are responsive to abiotic stresses in rice. J. Integr. Plant Biol. 49, 655–663 (2007).
63. Maestri, E. et al. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48, 667–681 (2002).
64. Davidson, R. M. et al. Rice germin-like proteins: Allelic diversity and relationships to early stress responses. Rice 3, 43–55 (2010).
65. Daher, F. B. &Geitmann, A. Actin depolymerizing factors ADF7 and ADF10 play distinct roles during pollen development and pollen tube growth. Plant Signal. Behav. 7, 879–881 (2012).
66. Augustine, R. C., Vidali, L., Kleinman, K. P. &Bezanilla, M. Actin depolymerizing factor is essential for viability in plants, and its phosphoregulation is important for tip growth. Plant J. 54, 863–875 (2008).
67. Mutlu, A., Pfeil, J. E. &Gal, S. A probarley lectin processing enzyme purified from Arabidopsis thaliana seeds. Phytochemistry 47, 1453–1459 (1998).
68. Chen, J. et al. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. Proc. Natl. Acad. Sci. U. S. A. 105, 11436–11441 (2008).
69. Guo, L. et al. Cytosolic Phosphorylating Glyceraldehyde-3-Phosphate Dehydrogenases Affect Arabidopsis Cellular Metabolism and Promote Seed Oil Accumulation. Plant Cell 26, 1–14 (2014).
70. Zhang, X. H., Rao, X. L., Shi, H. T., Li, R. J. &Lu, Y. T. Overexpression of a cytosolic glyceraldehyde-3-phosphate dehydrogenase gene OsGAPC3 confers salt tolerance in rice. Plant Cell. Tissue Organ Cult. 107, 1–11 (2011).
71. Lin, M. et al. A positive feedback loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties. Plant Physiol. 164, 2045–53 (2014).
72. Wu, T. ying et al. Interplay between Heat Shock Proteins HSP101 and HSA32 Prolongs Heat Acclimation Memory Posttranscriptionally in Arabidopsis. Plant Physiol. 161, 2075–2084 (2013).
73. Agarwal, M. et al. Molecular characterization of rice hsp101 : complementation of yeast hsp104 mutation by disaggregation of protein granules and differential expression in indica and japonica rice types. 543–553 (2003).
74. Nieto-Sotelo, J. et al. Maize HSP101 Plays Important Roles in Both Induced and Basal Thermotolerance and Primary Root Growth. Plant Cell 14, 1621–1633 (2002).
75. Chang, C. C., Huang, P. S., Lin, H. R. &Lu, C. H. Transactivation of protein expression by rice HSP101 in planta and using Hsp101 as a selection marker for transformation. Plant Cell Physiol. 48, 1098–1107 (2007).
76. Ponce, G., Cassab, G. I. &Nieto-sotelo, J. Role of HSP101 in the stimulation of nodal root development from the coleoptilar node by light and temperature in maize ( Zea mays L .) seedlings. 62, 4661–4673 (2011).
77. Gull??, M., Corradi, M., Rampino, P., Marmiroli, N. &Perrotta, C. Four members of the HSP101 gene family are differently regulated in Triticum durum Desf. FEBS Lett. 581, 4841–4849 (2007).
78. Lee, G. J. &Vierling, E. A Small Heat Shock Protein Cooperates with Heat Shock Protein 70 Systems to Reactivate a Heat-Denatured Protein 1. 122, 189–197 (2000).
79. Haslbeck, M., Miess, A., Stromer, T., Walter, S. &Buchner, J. Disassembling protein aggregates in the yeast cytosol: The cooperation of HSP26 with SSA1 and HSP104. J. Biol. Chem. 280, 23861–23868 (2005).
80. Queitsch, C., Hong, S., Vierling, E. &Lindquist, S. Heat Shock Protein 101 Plays a Crucial Role in Thermotolerance in Arabidopsis. 12, 479–492 (2000).
81. Anderson, J. M. et al. The encoded primary sequence of a rice seed ADP-glucose pyrophosphorylase subunit and its homology to the bacterial enzyme. J. Biol. Chem. 264, 12238–12242 (1989).
指導教授 葉靖輝(Ching-Hui Yeh) 審核日期 2016-12-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明