博碩士論文 102224024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.207.240.230
姓名 周筱儒(Siao-Ru Jhou)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 溫度對AtHsfA6b在細胞間的核質分佈與阿拉伯芥突變株hit2/xpola性狀之關聯性
(The correlation of the temperature to Nucleo-cytoplasmic distribution of AtHsfA6b and phenotype of Arabidopsis hit2/xpola mutant)
相關論文
★ 阿拉伯芥突變種(hit1)之位址定位★ 阿拉伯芥之HIT1蛋白質為酵母菌Vps53p之對應物且能影響植物對高溫及水份逆境之耐受性
★ 阿拉伯芥繫鏈同源蛋白質HIT1對頂端生長之影響及熱耐受基因HIT2之遺傳定位★ 阿拉伯芥hit3遺傳位址定位與HIT1啟動子分析
★ 利用基因功能活化法研究阿拉伯芥乙烯生合成之調控機制★ 阿拉伯芥突變種hit2之位址定位
★ 利用化學遺傳法研究阿拉伯芥 revert to eto1 41 (ret41) 之功能研究★ 阿拉伯芥hit3和et突變種之生理定性及其基因定位
★ 阿拉伯芥囊泡繫鏈因子HIT1在逆境下維持內膜完整性之探討與ret8之基因定位★ 阿拉伯芥HS29之基因定位及ET參與植物耐熱機轉之探究
★ 阿拉伯芥中藉由核運輸接受器HIT2/XPO1A進行核質間運輸以促使植物耐受高溫逆境之專一分子的探索研究★ 阿拉伯芥hs49與78hs突變株之生理定性及其耐熱基因定位
★ 阿拉伯芥HIT4為不同於MOM1的新調節方式調控熱誘導染色質重組並在各個植物生長發育轉換時期表現★ 阿拉伯芥熱誘導性狀突變株R45之基因定位及HSP40參與植物耐熱機轉之探究
★ 阿拉伯芥hit4逆轉株r13及r34之基因定位與r34耐熱機轉之探究★ 蛋白質法尼脂化修飾參與植株耐熱反應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 阿拉伯芥heat intoleran 2(hit2)突變株一顆對高溫敏感。HIT2基因編碼的產物是核運輸受體EXPORTIN1A,其功能為辨識帶有NES的蛋白質,助其從細胞核輸出到細胞質。阿拉伯芥有兩個XPO1同源基因,分別為XPO1A及XPO1B。在先前的研究中發現,hit2/xpo1a突變株對熱休克、持續性高溫逆境和強光逆境敏感,而xpo1b突變株則無,這明確顯示出兩者在多種逆境耐受能力上,扮演著不同的角色。已知高溫逆境會刺激熱逆境轉錄因子heat stress transcription factors(HSFs)表現並進入細胞核啟動下游抵禦機制,例如熱休克蛋白。欲釐清HIT2/XPO1A的突變究竟困住哪些受質以致造成種種性狀,本研究嘗試從帶有NES的HSFs著手。為了找尋是否有HIT2/XPO1A專一辨認的受質(HSFs),我們將其接上Green fluorescent protein(GFP),產生融和蛋白,觀察他們在野生型(WT)、hit2 和xpo1b突變株的阿拉伯芥原生質體中,常溫下與高溫下細胞核質之分佈變化。我們找到AtHsfA6b是HIT2的專一受質。惟在高溫下觀察到AtHsfA6bΔNES/a6b-1與AtHsfA6b/a6b-1兩者對高溫都不敏感,顯示AtHsfA6b雖會被HIT2的專一調節,但HIT2之高溫敏感性狀並不源自於AtHsfA6b困之於細胞核內。本研究進而觀測,AtHsfA6b/a6b-1與AtHsfA6bΔNES/a6b-1對其他類型的環境逆境的耐受性,並與hit2突變株進行比對,發現AtHsfA6b之細胞核質分佈扮有其角色在植物耐受除高溫以外的環境逆境中。
摘要(英) Arabidopsis heat-intolerant 2(hit2)mutant was isolated because it displays heat and light sensitive phenotypes. The mutated locus was later mapped to be at the EXPORTIN1A(XPO1A)gene, which encodes a nuclear transport receptor whose function is to mediate transportation of nuclear export sequence(NES)-containing proteins from nucleus to cytoplasm. There are two XPO1 homologous genes, HIT2/XPO1A and XPO1B, in Arabidopsis genome, and they share ~87% amino acid sequence identity. However, only hit2/xpo1a but not xpo1b mutant plants exhibit heat- and high light-sensitivities phenotypes. This indicates that HIT2/XPO1Aand XPO1B are not functionally redundant, and implies the existence of HIT2/XPO1A -specific substrate. It is known that many heat stress transcription factors(HSFs)contain both nuclear localization sequence nuclear localization signal(NLS)and nuclear export signal(NES), and are the major regulators for heat and high light stress responses in plant. To identify which of them might cause hit2/xpo1a phenotypes, we started by examining the intracellular localization of green fluorescent protein(GFP)-tagged HSFs in protoplasts prepared from WT, hit2/xpo1a and xpo1b leaves, at both normal(22°C)and high(37°C)temperature conditions. These results indicated that AtHSFA6b is HIT2/XPO1A-specific substrate. Both AtHsfA6b/a6b-1 and AtHsfA6bΔNES/a6b-1 are not sensitive to high-temperatures. These indicated that the retaintion of AtHsfA6b in the nucleous is not the cause resulting the hit2/xpo1a heat-intolerant phenotypes. I therefore examined the responses of AtHsfA6b/a6b-1 and AtHsfA6bΔNES/a6b-1 to other environmental stimuli and compared to that hit2/xpo1a. Results indicated that the Nucleo-cytoplasmic distribution of AtHsfA6b is necessary for plant to tolerate certain types of eveironmental stresses other than high temperatures. However, we found that hit2 and AtHsfA6bΔNES/a6b-1 has freezing-sensitive phynotype. AtHsfA6b/a6b-1 is not sensitive to freezing. At different degrees, how nucleo-cytiplasmic transport of AtHsfA6b cause the confining AtHsfA6b in nucleus of the different phenotype.
關鍵字(中) ★ 熱休克轉錄因子
★ 核質分佈
★ 溫度逆境
關鍵字(英) ★ heat intoleran 2
★ heat shock factor
★ Nucleo-cytoplasmic distribution
論文目次 目錄
中文摘要 I
Abstract II
致謝 VI
目錄 V
圖目錄 V
表目錄 VII
一、緒論 1
二、材料與方法 5
三、實驗結果 18
AtHsfA6b是HIT2的專一受質 18
AtHsfA6b有助於植物耐熱性但與hit2無關 20
AtHsfA1s、AtHsfA2有助於AtHsfA6b進入細胞核 20
GFP接在AtHsfA6b的N端/C端/剔除NES會造成AtHsfA6b在細胞間的分佈不同 21
AtHsfA6b在細胞核內的累積不影響AtHsfA6b對DREB2A啟動子的活化 22
AtHsfA6b的表現會由低溫誘導但不受高溫影響 23
AtHsfA6b累積在細胞核會造成類似hit2突變株的低溫敏感性狀 23
高溫促使AtHsfA6b明顯累積在細胞核中,而低溫則不明顯 23
AtHsfA6b在細胞核內的分佈會影響AtHsfA6b對DREB1A啟動子的活化 24
四、討論 25
五、參考文獻 32
六、附錄 57
參考文獻 Blanvillain, R., Boavida, L. C., McCormick, S., & Ow, D. W.(2008). Exportin1 genes are essential for development and function of the gametophytes in Arabidopsis thaliana. Genetics, 180(3), 1493-1500.

Boscheinen O,Lyck R,Queitsch C,Treuter E,Zimarino V,Scharf K D.(1997)Heat stress transcription factors from tomato can functionally replace HSF1 in the yeast Saccharomyces cerevisiae. Molecular and General Genetics,255 (3):322–331.

Chan-Schaminet K Y,Baniwal S K,Bublak D,Nover L,Scharf K D. (2009)Specific interaction between tomato HsfA1 and HsfA2 creates hetero-oligomeric superactivator complexes for synergistic activation of heat stress gene expression. Journal of Biological Chemistry,284 (31):20848–20857.

Czarnecka-Verner E,Pan S,Salem T,Gurley W B.(2004)Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP. Plant Molecular Biology,56 (1):57–75.

Czarnecka-Verner, E., Yuan, C. X., Scharf, K. D., Englich, G., & Gurley, W. B.(2000) Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential. Plant molecular biology, 43(4), 459-471.

Döring P,Treuter E,Kistner C,Lyck R,Chen A,Nover L.(2000)The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. The Plant Cell,12 (2):265–278.

Guo M,Liu J,Ma X,Luo D,Gong Z,Lu M.(2016)The plant heat stress transcription factors(HSFs):structure,regulation,and function in response to abiotic stresses. Frontiers in Plant Science,7 (273):47–58.

Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J (2008)Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. Journal of Genetics and Genomics 35: 105−118

Haasen D, Kohler C, Neuhaus G, Merkle T(1999)Nuclear export of proteins in plants: AtXPO1 is the export receptor for leucine-rich nuclear export signals in Arabidopsis thaliana. Plant J 20: 695–705

Heerklotz D,Döring P,Bonzelius F,Winkelhaus S,Nover L.(2001)The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2. Molecular and Cellular Biology,21 (5):1759–1768.

Huang, Y. C., Niu, C. Y., Yang, C. R., & Jinn, T. L.(2016)The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant physiology, 172(2), 1182-1199.

Huang, H. Y., Chang, K. Y., & Wu, S. J. (2018) High irradiance sensitive phenotype of Arabidopsis hit2/xpo1a mutant is caused in part by nuclear confinement of AtHsfA4a. Biologia plantarum, 62(1), 69-79.

Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature biotechnology, 17(3), 287.

Kotak S,Port M,Ganguli A,Bicker F,von Koskull-Döring P.(2004)Characterization of C-terminal domains of Arabidopsis heat stress transcription factors(Hsfs)and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. The Plant Journal,39 (1):98–112.

Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki Y, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10: 1391–1406

Li, M., Doll, J., Weckermann, K., Oecking, C., Berendzen, K. W., & Schöffl, F.(2010) Detection of in vivo interactions between Arabidopsis class A-HSFs, using a novel BiFC fragment, and identification of novel class B-HSF interacting proteins. European journal of cell biology, 89(2-3), 126-132

Miller, G. A. D., & Mittler, R. O. N.(2006). Could heat shock transcription factors function as hydrogen peroxide sensors in plants?. Annals of Botany, 98(2), 279-288.

Nover, L., Bharti, K., Döring, P., Mishra, S. K., Ganguli, A., & Scharf, K. D.(2001). Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need?. Cell stress & chaperones, 6(3), 177.

Sangwan, V., Örvar, B. L., Beyerly, J., Hirt, H., & Dhindsa, R. S. (2002). Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. The Plant Journal, 31(5), 629-638.

Scharf K D,Berberich T,Ebersberger I,Nover L.(2012) The plant heat stress transcription factor(Hsf)family:struture,function and evolution. Biochimica et Biophysica Acta,1819 (2):104–119.

Scharf K D,Heider H,Höhfeld I,Lyck R,Schmidt E,Nover L.(1998) The tomato Hsf system:HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Molecular and Cellular Biology,18 (4):2240–2251.

Trischuk, R. G., Schilling, B. S., Low, N. H., Gray, G. R., & Gusta, L. V. (2014). Cold acclimation, de-acclimation and re-acclimation of spring canola, winter canola and winter wheat: the role of carbohydrates, cold-induced stress proteins and vernalization. Environmental and Experimental Botany, 106, 156-163.

Ohama N,Kusakabe K,Mizoi J,Zhao H,Kidokoro S,Koizumi S,Takahashi F,Ishida T,Yanagisawa S,Shinozaki K,Yamaguchi-Shinozaki K. (2015). The transcriptional cascade in the heat stress response of Arabidopsis is strictly regulated at the level of transcription factor expression. The Plant Cell,28:181–201.

Pockley, A. G. (2001). Heat shock proteins in health and disease: therapeutic targets or therapeutic agents?. Expert reviews in molecular medicine, 3(23), 1-21.
 
Wu C.(1995) Heat shock transcription factors:structure and regulation. Annual Review of Cell and Developmental Biology,11 (1):441–469.

Wu, S. J., Wang, L. C., Yeh, C. H., Lu, C. A., & Wu, S. J.(2010). Isolation and characterization of the Arabidopsis heat‐intolerant 2(hit2)mutant reveal the essential role of the nuclear export receptor EXPORTIN1A(XPO1A)in plant heat tolerance. New Phytologist, 186(4), 833-842.

Yamaguchi-Shinozaki, K., & Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends in plant science, 10(2), 88-94.
指導教授 吳少傑(Shaw-Jye Wu) 審核日期 2019-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明