博碩士論文 102225006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.208.159.25
姓名 沈睿謙(Rui-Qian Shen)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 在 Black-Sholes 模型下運用選擇權資料進行動態避險之比較
(Comparisons of dynamic hedging of financial options using different volatility estimators under the Black-Scholes model)
相關論文
★ Structure learning for hierarchical Archimedean copulas★ Sensitivity analysis of credit derivatives
★ Asset Allocation Based on the Black-Litterman and GARCH Models★ A Dynamic Rebalancing Strategy for Portfolio Allocation
★ A Multivariate Markov Switching Model for Portfolio Optimization★ 基於 Copula 模型的資產配置及台灣股票市場的應用
★ Copula連結時間序列應用在失業率下之建模★ Calibrating the state price densities using TAIEX options
★ Estimating intensity processes from Credit Default Swaps★ Copula連結之天氣資料預測
★ Efficient Importance Sampling for Copula Models with Applications★ 貝氏補值方法應用在行星資料的週期和質量上
★ 信用違約交換之定價★ 利用重點抽樣的有效率選擇權訂價
★ Improved Mortality Forecasting Using Augmented Data★ A direct method for calculating Greeks under some L
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 投資人對於未來有很多觀點,所以許多學者在Black-Scholes 模型下利用選擇權資料去估計波動度。本文提供了一個在Black-Scholes 模型下估計波動度的方法。在我們的方法中,我們考慮了一個在Black-Scholes 模型下利用所有選擇權資料以及廣義線性回歸去估計波動度。之後,用估計出來的波動度去計算Greeks 並且對不同履約價的TAIEX 選擇權做動態避險。實證分析的結果顯示,我們所使用的避險方法優於其他的指標,也就是說,利用隱含波動或是歷史log return 的標準差。
摘要(英) Options contain many investor’s future views toward future, thus many scholars estimate the volatility in Black-Scholes model by using option data. In this thesis, we provide a method to estimate volatility under Black-Scholes model. In our method, we consider a generalized linear regression to estimate the volatility under the Black-Scholes model by using all options. Afterwards, we use the estimated volatility to calculate Greeks and do dynamic hedging for TAIEX options at different strike price. The empirical results show that hedging using this method outperforms other benchmark methods, i.e., using
implied volatilities or using standard deviations of historical log returns.
關鍵字(中) ★ Greeks
★ 動態避險
★ Delta vega 避險
★ Delta 避險
★ 牛頓法
關鍵字(英) ★ Greeks
★ Dynamic hedge
★ Delta vega hedge
★ Delta hedge
★ Newton method
論文目次 摘要i
Abstract ii
誌謝iii
List of Figures vi
List of Tables vii
1 Introduction 1
2 Methodology 4
3 Simulation studies 7
4 Empirical Analysis 9
4.1 Exploratory data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Dynamic hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 Dynamic Hedging Result 18
5.1 Delta Hedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Delta Vega Hedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6 Conclusion 32
References 33
參考文獻 Bakshi, G., N. Kapadia, and D. Madan (2003). Stock return characteristics, skew laws,
and the differential pricing of individual equity options. Review of Financial Studies 16,
101–143.
Bali, T. and A. Hovakimian (2009). Volatility spreads and expected stock returns. Management
Science 55, 1797–1812.
Bawa, V. S. (1975). Optimal rules for ordering uncertain prospects. Journal of Financial
Economics 2, 95–121.
Black, F. and M. Scholes (1973). The pricing of options and corporate liabilities. The
Journal of Political Economy 81(3), 637–654.
Bollerslev, T., M. Gibson, and H. Zhou (2004). Dynamic estimation of volatility risk
premia and investor risk aversion from option-implied and realized volatilities. Finance
and Economics Discussion Series.
Brenner, M. and M. Subrahmanyam (1988). A simple solution to compute the implied
standard deviation. Financial Analysts Journal, 80–83.
Carr, P. and L. Wu (2009). Variance risk premiums. Review of Financial Studies 22,
1311–1341.
Corrado, C. and T. Miller (1996). A note on a simple, accurate formula to compute
implied standard deviations. Journal of Banking and Finance 20, 595–603.
DeMiguel, V., Y. Plyakha, R. Uppal, and G. Vilkov (2013). Improving portfolio selection
using option-implied volatility and skewness. Journal of Financial and Quantitative
Analysis 48, 1813–1845.
Feinstein, S. (1988). A source of unbiased implied volatility forecasts. Working paper 88-9
, Federal Reserve Bank of Atlanta, 595–603.
Hanly, J. and J. Cotter (2005). Re-evaluating hedging performance. Journal of Futures
Markets 26(7), 677–702.
Haug, E. and J. Haug (1996). Implied forward volatility. Paper presented at the Third
Nordic Symposium on Contingent Claims Analysis in Finance 20, 595–603.
Haug, E. G. (2007). The Complete Guide to Option Pricing Formulas. New York:
McGraw-Hill Education.
Hull, J. C. (2011). Options, Futures, and Other Derivatives 8th. New Jersey: Prentice
Hall.
Liu, Y. and Y. Wang (2013). Volatility estimation by combining stock price data and
option data. Statistics and Its Interface 6(4), 427–433.
Macmillan, L. G. (1993). Options as a Strategic Investment. New Jersey: Prentice Hall.
Madan, D. B. and P. P. Carr (1998). The variance gamma process and option pricing.
European Finance Review 2, 79–105.
Merton, R. C. (1976). Option pricing when underlting stock return are discontinuous.
Journal of Financial Economics 3, 125–144.
Roy, A. (1952). Safety first and the holding of assets. Econometrica 20(3), 431–449.
指導教授 鄧惠文(Huei-Wen Teng) 審核日期 2015-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明