博碩士論文 102225021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.92.28.52
姓名 何威霆(Wei-ting Ho)  查詢紙本館藏   畢業系所 統計研究所
論文名稱
(On Jump Risk of Liquidation in Limit Order Book)
相關論文
★ SABR模型下使用遠期及選擇權資料的參數估計★ 台灣指數上的股價報酬預測性
★ 台灣股票在alpha-TEV frontier上的投資組合探討與推廣★ 結構型商品之創新、評價與分析
★ 具有厚尾殘差下 有效地可預測性檢定★ A Dynamic Rebalancing Strategy for Portfolio Allocation
★ A Multivariate Markov Switching Model for Portfolio Optimization★ 漸進最佳變點偵測在金融科技網路安全之分析
★ Reducing forecasting error under hidden markov model by recurrent neural networks★ Empirical Evidences for Correlated Defaults
★ 金融市場結構轉換次數的偵測★ 重點重覆抽樣下拔靴法估計風險值-以台泥華碩股票為例
★ 在DVEC-GARCH模型下風險值的計算與實證研究★ 資產不對稱性波動參數的誤差估計與探討
★ 公司營運狀況與員工股票選擇權之關係★ 結合買權改進IGARCH模型之參數估計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究探討如何利用限價單在其市場中尋求最佳的交易策略。許多文
獻側重於在暫時性和永久性市場衝擊下,交易成本的極小化;而本文主
要針對在期末時間(T),在有未成交風險下,使投資人資產的期望指數
效用函數極大化。另一方面,考量價格跳躍的風險,本文假設市場價格
服從跳躍擴散模型。作為投資人,最關注的是最佳交易曲線,因此隨機
最佳化控制為本文的主題。本研究使用漢密爾頓-雅可比-貝爾曼方程式,
藉由此方程以及變數變換的技巧,我們解出了控制因子的解析解。最後,
由模擬分析結果可以發現,我們的研究成果的確降低在有價格跳躍假設
下,投資人期末總資產的變異風險。
摘要(英) We deal with the optimized problem of portfolio liquidation with submitting limit orders into limit order book in this paper. Many other papers focus on minimizing transaction costs arising from permanent and temporary market impact, while we focus on maximizing the expected exponential utility of our P&L profile at a terminal time T. On the other hand, we also consider the price risk of jumps, so jump diffusion model is introduced. As an investor, the optimal trading curve is one thing that we may concern, thus we are now facing a stochastic optimization problem. To achieve our goal, a Hamilton-Jacobi-Bellman equation is solved with a closed-form solution in our result. We also do some numerical examples to interpret how worthy of our work has made. Indeed, we successfully deduce the variation of investor’s final asset under our framework.
關鍵字(中) ★ 隨機最佳化控制
★ 限價單
★ 漢密爾頓-雅可比-貝爾曼方程
★ 跳躍擴散模型
關鍵字(英) ★ stochastic optimal control
★ limit order book
★ Hamilton-Jacobi-Bellman equation (HJB)
★ jump diffusion
論文目次 摘要........................................................i
Abstract...................................................ii
誌謝......................................................iii
List of Figures............................................vi
List of Tables............................................vii
1 Introduction..............................................1
2 Dynamics to the model.....................................6
3 Optimal quotes............................................7
3.1 Objective..............................................7
3.2 Dynamic programming....................................7
3.3 HJB equation...........................................8
4 Special cases............................................12
4.1 Quote with T goes infinity............................12
4.2 Limiting behavior without price risk..................14
4.3 With extremely high liquidation cost..................14
5 Dependence of parameters.................................16
5.1 In market model.......................................16
5.2 Intensity of arrival rate.............................18
5.3 Others................................................20
5.4 Crossover analysis....................................21
6 Simulations..............................................22
6.1 Setup.................................................22
6.2 Simulation results....................................24
7 Conclusion...............................................27
References.................................................29
Appendices.................................................32
參考文獻 Almgren, R. and N. Chriss (2001). Optimal execution of portfolio transactions. Journal of risk 3, 5–40.
Avellaneda, M. and S. Stoikov (2008). High frequency trading in a limit order book. Quantitative finance 8, 217–224.
Bertsimas, D. and A. W. Lo (1998). Optimal control of execution costs. Journal of financial markets 1, 1–50.
Bessembinder, H. and K. Venkataraman (2010). Bid–Ask Spreads. John Wiley & Sons, Ltd.
Cartea, A., S. Jaimungal, and J. Ricci (2014). Buy low sell high: a high frequency trading perspective. SIAM Journal on Financial Mathematics 5(1), 415–444.
Cont, R. and A. D. Larrard (2013). Price dynamics in a markovian limit order market. SIAM J. Financial Mathematics 4, 1–25.
Cont, R., S. Stoikov, and R. Talreja (2010). A sochastic model for order book dynamics. Operations Research 58(3), 549–563.
Fleming, W. H. and H. M. Soner (2006). Controlled Markov Processes and Viscosity Solutions (2 ed.), Volume 25. Springer New York.
Guéant, O., C. A. Lehale, and J. Fernandez-Tapia (2013). Dealing with the inventory risk. Mathematics and Financial Economics 7, 477–507.
Guéant, O., C. A. Lehalle, and J. Fernandez-Tapia (2012). Optimal portfolio liquidation with limit orders. SIAM Journal on Financial Mathematics 3, 740–764.
Guilbaud, F. and H. Pham (2011). Optimal high frequency trading with limit and market orders. Available at SSRN.
Hanson, F. B. (2007). Applied stochastic processes and control for jump-diffusions: modeling, analysis, and computation. SIAM.
Harris, L. and J. Hasbrouck (1996, June). Market vs. limit orders: The superdot evidence on order submission strategy. J. of financial and quantitative analysis, Available at SSRN.
Ho, T. and H. R. Stoll (1981, March). Optimal dealer pricing under transactions and return uncertainty. Journal of Financial Economics 9(1), 47–73.
Höschler., M. (2011). Limit order book models and optimal trading strategies. Ph. D. thesis, Technical University Berlin.
Iori, G., M. Daniels, J. Farmer, L.Gillemot, S.Krishnamurthy, and E. Smith (2003). An analysis of price impact function in order-driven markets. Physica A 324, 146–151.
Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous.
Journal of financial economics 3, 125–144. Obizhaeva, A. A. and J. Wang (2013). Optimal trading strategy and supply/demand
dynamics. Journal of financial markets 16, 1–32.
Sandas, P. (2001). Adverse selection and competitive market making: Empirical evidence from a pure limit order market. Review of Financial Studies 14, 705–734.
Sardana, K. and S. K. Bhattacharya (2011, July). An optimal rule for switching over to renewable fuels with lower price volatility: A case of jump diffusion process. Technical
Report 103926, Agricultural and Applied Economics Association.
Smith, E., J. D. Farmer, L. Gillemot, and S. Krishnamurthy (2003). Statistical theory of the continuous double auction. Quantitative finance 3, 481–514.
Weber, P. and B. Rosenow (2005, August). Order book approach to price impact. Quantitative finance 5(4), 357–364.
Xu, J. (2014, December). Optimal strategies of high frequency traders. Job Market Paper.
Zheng, B., E. Moulines, and F. Abergel (2013). Price jump prediction in limit order book. Journal of mathematical finance 2, 242–255.
指導教授 傅承德(Cheng-der Fuh) 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明