博碩士論文 102226008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.22.51.241
姓名 譚承恩(Cheng-En Tan)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 掃描式二倍頻結構照明顯微術
(Second Harmonic Generation Scanning Structured Illumination Microscopy)
相關論文
★ 非反掃描式平行接收之雙光子螢光超光譜顯微術★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數
★ LASER光源暨LED在老鼠毛生長的低能量光治療比較分析★ 應用線狀結構照明提升雙光子顯微鏡解析度
★ 以同調結構照明顯微術進行散射樣本解析度之提升★ 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究
★ 鏡像輔助斷層掃描相位顯微鏡★ 以數位全像術重建多波長環狀光束之研究
★ 相位共軛反射鏡用於散射介質中光學聚焦之研究★ 雙光子螢光超光譜顯微術於多螢光生物樣本之研究
★ 倍頻非螢光基態耗損超解析之顯微成像方法★ 葉綠素雙光子螢光超光譜影像於光合作用研究之應用
★ 雙光子掃描結構照明顯微術★ 微投影光學切片超光譜顯微術
★ 使用結構照明顯微術觀察活體小鼠毛囊生長週期之變化★ 一次性多角度漫射光譜量測系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雙光子顯微鏡因為非線性的激發過程,會有良好的光學切片能力,其中二倍頻顯微鏡在觀察肌腱組織時,可以利用肌腱組織的非中心對稱結構,無須染色就可直接觀察樣本,再加上二倍頻訊號激發的過程中無實際能階躍遷,滿足動量守恆,不會對樣本產生光破壞,有益於長時間觀察樣本。
不同於螢光,二倍頻訊號因為是屬於無能階躍遷的機制,所以不適用於以螢光訊號為基礎的超解析度顯微鏡,但可與不受限於螢光訊號的結構照明顯微術進行結合。傳統的結構照明顯微術以廣域照明架構為基礎,但對於雙光子顯微系統而言,需要極高的激發光強度才能使激發樣本上的雙光子螢光,所以須選用點掃描式的系統來增加雙光子的激發效率。本論文將結合二倍頻顯微鏡以及點掃描式結構照明以提升二倍頻顯微術的解析度。
二倍頻訊號是同調訊號,成像理論與螢光的成像理論不同,本論文基於同調訊號的成像理論建立了掃描式二倍頻結構照明顯微術的成像原理,並證實了在重建後的影像中具有較高頻的資訊,透過模擬,在1047 nm、873 nm、748.6 nm和655 nm這四種不同週期的條紋下提升的解析度分別為1.28、1.35、1.44、1.52倍;在實驗上則利用雞翅的肌腱組織成功的在1047 nm、873 nm條紋週期下於X方向取得1.29和1.38倍的解析度提升,Y方向則取得1.3和1.4倍的解析度提升。
摘要(英) Two-photon microscopy has an outstanding optical sectioning capability due to its nonlinear excitation process. While observing tendon tissues with its second harmonic generation microscopy, because of the non-centrosymmetric structure, tendons can be observed directly. In addition, the excited process has no energy level transitions, meeting the conservation of momentum, therefore the sample will not be damaged by the light source, making it well suited for long time observations.
Unlike fluorescents, second harmonic signals are under the conditions of no energy level transitions, thus it does not apply to the fluorescent signal-based super-resolution microscopies, however, it could be combined with structured illumination microscopy. The original structured illumination microscopy was based on a wide field setup, yet two-photon microscopy systems require extremely high excitation intensities to produce the two-photon excitation on its samples, consequently, scanning systems were chosen to overcome such issue. This paper will combine the scanning second harmonic generation microscope and structured illumination microscopy to improve the resolution.
Second harmonic signals are coherent signals, its imaging theory is different to the incoherent signal’s. In this paper, it is proven that the reconstruction image has a higher frequency information based on the Second Harmonic Generation Scanning Structured Illumination Microscopy theory. In simulation, under four different periods: 1047 nm, 873 nm, 748.6 nm and 655 nm, the resolution is enhanced by 1.28, 1.35, 1.44, and 1.52 times respectively; in experiments, by using chicken wings tendon as samples, resolution were improved by 1.29 and 1.38 times; and in the Y direction, 1.3 and 1.4 times the resolution improvement were achieved.
關鍵字(中) ★ 二倍頻
★ 掃描式結構照明顯微術
關鍵字(英)
論文目次

摘要 i
Abstract iii
目錄 v
圖索引 vii
第一章 緒論 1
1.1.1 光學顯微鏡的繞射極限 1
1.1.2 二倍頻顯微鏡 3
1.1.3 結構照明顯微術的發展 4
1.2 研究目的與動機 8
第二章 基本理論 10
2.1 結構照明顯微術 10
2.2 二倍頻(SHG)發光原理 15
2.3 同調光與非同調光的成像公式 17
2.4掃描式二倍頻結構照明顯微術 19
第三章 實驗系統架構 26
3.1 實驗架構 26
3.2 實驗架構參數 29
3.3 實驗系統模擬 31
3.3.1 PSF之模擬 31
3.3.2 USAF 1951 Resolution Target 模擬 34
3.3.2 點訊號源之模擬 36
第四章 實驗結果 38
4.1 樣本製作 38
4.2 影像還原流程 39
第五章 結論 50
參考文獻 52
中英文名詞對照表 55
參考文獻

[1]. Lipson and Tannhauser, “ Optical Physics,” United Kingdom: Cambridge, 340(1998).
[2]. Olympus, “http://www.olympusmicro.com/primer/anatomy/numaperture.html”
[3]. G Dolino, “Direct observation of ferroelectric domains in TGS with second‐harmonic light,” Applied. Physics Letters 22, 123-124(1973).
[4]. R. Hellwarth and P. Christensen, “Nonlinear optical microscopy examination of structure in polycrysyalline ZnSe,” Optics Communication 12, 318-322(1974).
[5]. J. N. Gannaway and C. J. R. Sheppard, “Second-harmonic imaging in the scanning optical microscope,” Optical and Quantum Electronics, 435-439(1978).
[6]. I. Freund, M. Deutsch and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophysical journal 50, 693-712(1986).
[7]. O Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell and L. M. Loew, “Probing membrane potential with nonlinear optics,” Biophysical Journal 65, 254-257(1993).
[8]. G. Peleg, A. Lewis, M. Linial and L. M. Loew, “Non-liner optical measurement of membrane potential around single molecules at selected,” Proceedings of the National Academy of Sciences 96, 6700-6704(1999).
[9]. Y. Guo, P. P. Ho, A. Tirksliunas, F. Liu and R. R. Alfano, “Optical harmonic generation from animal tissues by the use of picosecond and femtosecond laser pluses,” Applied Optics 35, 6810-6813(1996).
[10]. J. Paul, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone and W. A. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophysical Journal 81, 493-508(2002).
[11]. S. W. Hell and J. Wichomann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission depletion fluorescence microscopy,” Optics letters 19, 780-782(1994).
[12]. T. A. Klar and S. W. Hell, “Sub-diffraction resolution in far-field fluorescence microscopy,” Optics letters 24, 954-956(1999.).
[13]. E. Betzig, “Proposed method for molecular optical imaging,” Optics letters 20, 237-239(1995).
[14]. M. J. Rust, M. Bates and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nature Methods 3, 793-796(2006).
[15]. M. Neil, R. Juskaitis and T. Wilson, “Method of obtaining optical sectioning by structured light in convention microscope,” Optics letters 22, 1905-1907(1997).
[16]. M. G. L. Gustaffsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” Journal of Microscopy 198, 82-87(2000).
[17]. R. R. Heintzmann and T. M. Jovin, “Saturated patterned excitation microscopy - a concept for optical resolution improvement,” Journal of Optical Society of America A 19, 1599-1099(2002).
[18]. M. G .L. Gustaffsson, L. Shao, P. M. Carlton, C. Wang, I. N. Golubovskaya and W .Z. Cande, “Three-dimensional resolution doubling in weild-deild fluorescence microscopy by structure illumination,” Biophysical journal 94, 4957-4970(2008).
[19]. P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao and J. Wittbrodt, “Fast, high-contract imaging of animal development with scanned light sheet-based structure- illumination microscopy,” Nature methods 7, 637-642(2010).
[20]. L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustaffsson, “I5S: Wide-field Light Microscopy with 100-nm-Scale Resolution in Three Dimensions,” Biophysical Journal 94, 4971-4983(2008).
[21]. B. J. Chang, L. J. Chou, Y. C. Chang, and S. Y. Chiang, “Isotropic image in structured illumination microscopy patterned with a spatial light modulator,” Optics Express 17, 14710-14721(2009).
[22]. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto and M. G. L. Gustafsson, “Super- resolution video microscopy of live cells by structured illumination,” Nature Methods 6, 339-342(2009).
[23]. Takashi Fukano and Atsushi Miyawaki, “Whole-field fluorescence microscope with digital micromirror device: imaging of biological samples,” Applied optics 42, 4119-4124(2003).
[24]. D. Dan M. Lei, B. Yao, W. Wang, M. Winterhalder and A. Zumbusch, “DMD-based LED-illumination Super-resolution and optical secting microscopy,” Scientific reports 3, (2013).
[25]. B. Boruah and M. Neil, “Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam,” Review of Scientific Instruments 80, 13705(2009).
[26]. Chia-Hua Yeh and Szu-Yu Chen, “Resolution enhancement of two-photon microscopy via intensity-modulated laser scanning structured illumination,” Applied Optics 54, 2309-2317(2015).
[27]. R. Heintzmann, T. M. Jovin and C. Cremer, “Saturated patterned excitation-a concept for optical resolution,” Journal of the Optical Society of America A 19, 1599-1609(2002).
[28]. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2002).
[29]. A. I. I. T-20 UASF 1951 Chart Standard Layout Product Specification Available, “https://www.appliedimage.com/files/8sYYLo/USAF%201951%20Test%20Target%20T-20_v1-04.pdf”
[30]. KriegerScience, “ttps://kriegerscience.wordpress.com/2010/10/24/how-to-dissect-a-chicken-wing”
指導教授 陳思妤 審核日期 2016-3-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明