博碩士論文 102226013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.238.90.95
姓名 紀堡鐘(Bao-Chung Chi)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 單晶銅成長石墨烯及其可撓性之研究
(Research of the graphene growth on single crystal copper and its flexibility)
相關論文
★ 膜堆光學導納量測儀★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究
★ 軟性電子阻水氣膜之有機層組成研究★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性
★ 以奈米壓印改善陽極氧化鋁週期性★ 含氫矽薄膜太陽電池材料之光電特性研究
★ 自我複製結構膜光學性質之研究★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究
★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究★ 以奈米小球提升矽薄膜太陽能電池吸收之研究
★ 定光電流量測法在氫化矽薄膜特性的研究★ 動態干涉儀量測薄膜之光學常數
★ 反應式濺鍍過渡態矽薄膜之研究★ 光子晶體偏振分光鏡之設計與製作
★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究★ 負折射率材料應用於抗反射與窄帶濾光片之設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 石墨烯具有高電子遷移率、高導電性、高穿透性、高機械強度,利用於電子元件製備與透明導電膜研究上受到重視。目前大多使用多晶銅箔利用化學氣相沉積法來製備高品質石墨烯,而不同晶向之銅表面與石墨烯之晶格匹配度不一致,所生長石墨烯單晶會產生不同方向性,導致晶界接合處產生較大接合缺陷,阻礙了電子的傳導,並降低其導電特性。

本研究利用化學電鍍剝離法製備表面為銅(111)之銅箔,並利用化學氣相沉積法成長石墨烯,透過製備單一晶向銅箔,降低晶格匹配度所造成之缺陷來成長單一方向性之石墨烯單晶,減少邊界接合缺陷產生,並與目前化學氣相沉積法於多晶銅箔之表面形貌、片電阻、載子遷移率、光穿透率、拉曼訊號比較,證實有較佳之品質。並運用此方法製備石墨烯並轉移至軟性基板上,並進行撓曲度量測,驗證石墨烯比起現今透明導電膜有較佳之可撓性,使其能運用取代現今之透明導電薄膜。

摘要(英) Graphene is a two-dimensional material composed of carbon atoms arranged in a hexagonal atomic structure. Its advantages are very good transparency, conductivity, excellent mechanical properties and it can be bent arbitrarily. So it achieve a lot of attractions on the applications of the electronic element and the transparent conductive film researches. Many of high quality graphene processes are developed by chemical vapor deposition. However, the grain boundary defects occurred when graphene synthesized on the polycrystalline Cu foil. The polycrystalline Cu grains lead to the different orientation of graphene domains owing to the lattice constant mismatch.



In this study, the Cu (111) foil has been fabricated by the peel-off method. The graphene domains with a consistency of orientation were synthesized on the single crystal Cu (111) thin film by chemical vapor deposition. And the measurements are including sheet resistance, mobility, transmittance, Raman shift and prove the graphene has better quality. Then flexibility measurements has been applied. It shows a remarkable flexibility to compare with the flexible transparent conductive film (ITO).

關鍵字(中) ★ 石墨烯
★ 化學氣相沉積法
關鍵字(英) ★ graphene
★ CVD
論文目次 摘要 I

Abstract II

致謝 III

目錄 IV

圖目錄 VII

表目錄 IX

第一章 序論 1

1-1 前言 1

1-2 研究動機 3

1-3 論文架構 4

第二章 基礎理論 5

2-1 石墨烯結構與特性 5

2-2 石墨烯製備方法 9

2-2-1 機械剝離法 9

2-2-2 碳化矽磊晶法 10

2-2-3 氧化石墨烯還原法 11

2-2-4 化學氣相沉積法 12

2-3石墨烯晶體結構 14

2-4可撓式透明導電膜 17

第三章 22

3-1 基本實驗流程 22

3-1-1電漿濺鍍剝離銅箔 22

3-1-2化學氣相沉積法製程 25

3-1-3 石墨烯轉印 26

3-1-4 可撓性測試 27

3-2 分析儀器 29

3-2-1 拉曼光譜儀 29

3-2-2 掃描式電子顯微鏡 31

3-2-3 X射線繞射分析儀 32

3-2-4 電子背向繞射分析 33

3-2-5 霍爾量測儀 34

第四章 結果與討論 35

4-1剝離銅箔之結果與分析 35

4-1-1濺鍍不同厚度銅膜 35

4-1-2剝離銅箔表面粗糙度 37

4-1-3 X射線繞射與電子背向繞射 39

4-2石墨烯成長之分析 43

4-2-1 製程溫度 43

4-2-2 氫氣流量 44

4-2-3 單晶銅成長石墨烯 46

4-3石墨烯導電膜之可撓度分析 51

4-3-1 不同曲率電性量測 52

4-2-2 吸附摻雜電性量測 54

4-3-2 可靠度測試 56

第五章 結論與未來工作 58

參考文獻 59

參考文獻 [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666-669, Oct 22, 2004.

[2] K. I. Bolotina, K. J. Sikes, Z. Jiang, M. Klimac, G. Fudenberga, J. Honec, P. Kima, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Communications, vol. 146, pp. 351-355, 2008.

[3] A. K. Geim, and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, no. 3, pp. 183-191, Mar, 2007.

[4] R. Murali, Y. Yang, K. Brenner, T. Beck, and J. D. Meindl, “Breakdown current density of graphene nanoribbons,” Applied Physics Letters, vol. 94, no. 24, Jun 15, 2009.

[5] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, no. 5887, pp. 385-388, Jul 18, 2008.

[6] G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, “The application of graphene as electrodes in electrical and optical devices,” Nanotechnology, vol. 23, no. 11, Mar 23, 2012.

[7] L. Colombo, X. Li, B. Han, C. Magnuson, W. Cai, Y. Zhu, and R. S. Ruoff, “Growth kinetics and defects of CVD graphene on Cu,” ECS Transactions, vol. 28, no. 5, pp. 109-114, 2010.

[8] L. Gao, J. R. Guest, and N. P. Guisinger, “Epitaxial Graphene on Cu(111),” Nano Letters, vol. 10, no. 9, pp. 3512-3516, Sep, 2010.

[9] K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” nature, vol. 438, no. 7065, pp. 197-200, 2005.

[10] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry′s phase in graphene,” Nature, vol. 438, no. 7065, pp. 201-204, 2005.

[11] 林永昌, 鄭碩方, 邱博文, "石墨烯之電子能帶特性與其元件應用," 2011].

[12] S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejon, “Tight-binding description of graphene,” Physical Review B, vol. 66, no. 3, pp. 035412, 2002.

[13] E. Y. Andrei, G. Li, and X. Du, “Electronic properties of graphene: a perspective from scanning tunneling microscopy and magneto-transport,” arXiv preprint arXiv:1204.4532, 2012.

[14] R. Nair, P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, N. Peres, and A. Geim, “Fine structure constant defines visual transparency of graphene,” Science, vol. 320, no. 5881, pp. 1308-1308, 2008.

[15] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. a. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” science, vol. 306, no. 5696, pp. 666-669, 2004.

[16] S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, “The optical visibility of graphene: Interference colors of ultrathin graphite on SiO2,” Nano letters, vol. 7, no. 9, pp. 2707-2710, 2007.

[17] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, and G. Martinez, “Epitaxial graphene,” Solid State Communications, vol. 143, no. 1-2, pp. 92-100, Jul, 2007.

[18] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, “Highly conducting graphene sheets and Langmuir–Blodgett films,” Nature nanotechnology, vol. 3, no. 9, pp. 538-542, 2008.

[19] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators,” Applied Physics Letters, vol. 93, no. 11, pp. 113103, 2008.

[20] H. Ago, Y. Ogawa, M. Tsuji, S. Mizuno, and H. Hibino, “Catalytic growth of graphene: toward large-area single-crystalline graphene,” The Journal of Physical Chemistry Letters, vol. 3, no. 16, pp. 2228-2236, 2012.

[21] K. A. Ritter, and J. W. Lyding, “The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons,” Nature materials, vol. 8, no. 3, pp. 235-242, 2009.

[22] Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nature Materials, vol. 10, no. 6, pp. 443-449, Jun, 2011.

[23] Y. Ogawa, B. Hu, C. M. Orofeo, M. Tsuji, K.-i. Ikeda, S. Mizuno, H. Hibino, and H. Ago, “Domain structure and boundary in single-layer graphene grown on Cu (111) and Cu (100) films,” The Journal of Physical Chemistry Letters, vol. 3, no. 2, pp. 219-226, 2012.

[24] H.-J. Shin, S.-M. Yoon, W. M. Choi, S. Park, D. Lee, I. Y. Song, Y. S. Woo, and J.-Y. Choi, “Influence of Cu crystallographic orientation on electron transport in graphene,” Applied Physics Letters, vol. 102, no. 16, Apr 22, 2013.

[25] L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS nano, vol. 4, no. 5, pp. 2865-2873, 2010.

[26] 楊明輝, "透明導電膜," 2006.

[27] S.-W. Cho, J.-A. Jeong, J.-H. Bae, J.-M. Moon, K.-H. Choi, S. W. Jeong, N.-J. Park, J.-J. Kim, S. H. Lee, and J.-W. Kang, “Highly flexible, transparent, and low resistance indium zinc oxide–Ag–indium zinc oxide multilayer anode on polyethylene terephthalate substrate for flexible organic light light-emitting diodes,” Thin Solid Films, vol. 516, no. 21, pp. 7881-7885, 2008.

[28] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature, vol. 457, no. 7230, pp. 706-710, 2009.

[29] X.-W. Fu, Z.-M. Liao, J.-X. Zhou, Y.-B. Zhou, H.-C. Wu, R. Zhang, G. Jing, J. Xu, X. Wu, and W. Guo, “Strain dependent resistance in chemical vapor deposition grown graphene,” Applied Physics Letters, vol. 99, no. 21, pp. 213107, 2011.

[30] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, and Y. I. Song, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature nanotechnology, vol. 5, no. 8, pp. 574-578, 2010.

[31] H. Bi, F. Huang, J. Liang, X. Xie, and M. Jiang, “Transparent conductive graphene films synthesized by ambient pressure chemical vapor deposition used as the front electrode of CdTe solar cells,” Advanced Materials, vol. 23, no. 28, pp. 3202-3206, 2011.

[32] H. K. Yu, K. Balasubramanian, K. Kim, J.-L. Lee, M. Maiti, C. Ropers, J. Krieg, K. Kern, and A. M. Wodtke, “Chemical Vapor Deposition of Graphene on a “Peeled-Off” Epitaxial Cu (111) Foil: A Simple Approach to Improved Properties,” ACS nano, vol. 8, no. 8, pp. 8636-8643, 2014.

[33] "Raman spectroscopy." Wikipedia.

[34] A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, and S. Roth, “Raman spectrum of graphene and graphene layers,” Physical review letters, vol. 97, no. 18, pp. 187401, 2006.

[35] J.-Y. Hwang, C.-C. Kuo, L.-C. Chen, and K.-H. Chen, “Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density,” Nanotechnology, vol. 21, no. 46, pp. 465705, 2010.

[36] W. Wu, Q. Yu, P. Peng, Z. Liu, J. Bao, and S.-S. Pei, “Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes,” Nanotechnology, vol. 23, no. 3, pp. 035603, 2012.

[37] 黃宏勝、林麗娟, “FE-SEM/CL/EBSD 分析技術,” 工業材料雜誌, vol. 201, 2003.

[38] 朱彥霖, “單晶相石墨烯製備與特性分析,” 中央大學光電科學與工程學系碩士論文, 2014.

[39] Z. Luo, Y. Lu, D. W. Singer, M. E. Berck, L. A. Somers, B. R. Goldsmith, and A. C. Johnson, “Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure,” Chemistry of Materials, vol. 23, no. 6, pp. 1441-1447, 2011.

[40] I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov, “Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene,” Acs Nano, vol. 5, no. 7, pp. 6069-6076, 2011.

[41] X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High efficiency graphene solar cells by chemical doping,” Nano letters, vol. 12, no. 6, pp. 2745-2750, 2012.

指導教授 郭倩丞、陳昇暉(Chien-Cheng Kuo Sheng-Hui Chen) 審核日期 2015-8-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明