博碩士論文 102226020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.95.131.208
姓名 馮培瑜(Feng, Pei-Yu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以波導錯位提升滑輪式環形共振腔之品質因子
(The enhancement of quality factor of pulley-type micro-ring resonator with offset)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
★ 整合慣性感測元件之導波矽基光學平台研究★ 矽基光偵測器研製與整合於光學波導系統
★ 光學滑鼠用之光學元件設計★ 高效率口袋型LED 投影機之研究
★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,我們使用的滑輪式環形共振腔 (Pulley-type micro-ring resonator)是經由耦合波導理論 (Coupled mode theory)計算後發展出來;由於環形共振腔相較於單點接觸式及跑道式環形共振腔有較長的耦合長度,能耦合進環內的光強度有所提升,這優點將使得滑輪式環形共振腔的品質因子 (Quality factor)較其他形式來得高。
我們經由設計耦合長度以及載波波導與彎曲波導間錯位結構的滑輪式環形共振腔,使用限時域差分法 (Finite-Difference Time-Domain Method, FDTD)結合等效折射率法 (Effective index approximation)模擬SOI (Silicon on isolator)基板上實際電磁波於波導中傳播情形,研究在載波波導與彎曲波導接合處進行不同程度錯位,發現能有效降低耦合區的光學損耗,減少耦合時產生的模態不匹配程度,達到臨界耦合 (Critical coupling),進而增加侷限於環內光強度,使該共振腔具有較高的品質因子。
本論文將一滑輪式環形共振腔的品質因子由9180提升至11148,提升了約21.44%。
摘要(英) In this study, we dealt with the optimization of the micro-ring resonator, which is called pulley-type micro-ring resonator. The micro-ring resonator was developed based on the coupled mode theory.
We adopted the finite-difference time-domain method (FDTD) to simulate the structure. By offsetting the junction of the straight waveguide and the curve waveguide at input and output port, it is found that the coupling loss can be reduced and the critical coupling can be achieved. We can enhance the confinement of the light propagating in the waveguide and the ring, which makes the Q-factor higher than the structure without offset.
In the study, the Q-factor is increased from 9180 to 11148, which is 21.44% higher than the original one.
關鍵字(中) ★ 環形共振腔
★ 滑輪式環形共振腔
★ 品質因子
★ 錯位
關鍵字(英) ★ micro-ring resonator
★ pulley-type micro-ring resonator
★ quality factor
★ offset
論文目次 摘要 .......................................................................................................... I
Abstract .................................................................................................... II
致謝 ....................................................................................................... III
目錄 ....................................................................................................... IV
圖目錄 ................................................................................................... VI
表目錄 .................................................................................................... X
第一章 序論 ...........................................................................................
1 1.1 積體式環形共振腔發展回顧 .......................................................... 1
1.2 研究動機 ........................................................................................ 10
1.3 結論 ................................................................................................ 15
第二章 基本理論與模擬方法 ............................................................. 16
2.1 耦合波理論 (Coupled mode theory) .............................................. 16 2.2
環型共振腔理論與模型建構 ........................................................ 21
2.3 臨界耦合 (Critical coupling) ......................................................... 26
2.4 等效折射率法 (Effective index approximation approximation approximation approximation approximation ) ........................... 34
2.5 有限時域差分法(Finite-difference time-domain method, FDTD) . 37
2.6 品質因子 (Q-factor)計算方法 ...................................................... 42
2.7 結論 ................................................................................................ 46
第三章 滑輪式環型共振腔之品質因子分析 ..................................... 49
3.1 高品質環形共振腔設計 ................................................................ 49
3.2 環形共振腔之波導錯位設計 ........................................................ 52
3.3 共振波長計算 ................................................................................ 53
3.4 品質因子計算 ................................................................................ 54
3.5 波導錯位對Q值之影響 ................................................................. 55
3.6 結論 ................................................................................................ 60
第四章 滑輪式環型共振腔之損耗分析 ............................................. 61
4.1 以光場強度分佈觀察光損耗來源 ................................................ 62
4.2 用光能量偵測器分析外圍損耗 .................................................... 63
4.3 結論 ................................................................................................ 67
第五章 實作結果與量測分析 ............................................................. 68
5.1 滑輪式環形共振腔成品呈現 ........................................................ 68
5.2 量測與實驗架構 ............................................................................ 71
5.3 結論 ................................................................................................ 73
第六章 結論與未來展望 ..................................................................... 74
6.1 總結 ................................................................................................ 74
6.2 未來展望 ........................................................................................ 75
參考文獻 ............................................................................................... 76
參考文獻 [1] C. Manolatou, “Passive components for dense optical integration based in high index-contrast, ” Ph.D. Thesis MIT EECS, 2001
[2] A.Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron., Vol 9, pp. 919-933, 1973
[3] K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Optical Express., Vol.15, pp. 7610-7615, 2007
[4] E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Technol. J., Vol. 48, pp. 2103-2132, 1969
[5] E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Technol. J., Vol. 48, pp. 2071-2102, 1969
[6] R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., Vol. 23, pp. 123–129, 1987
[7] D. Rafizadeh, “Experimental realization of nanofabricated semiconductor waveguide-coupled microcavity ring and disk optical resources,” Ph.D. Thesis NU, 1997
[8] D. Rafizadeh , J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, and S. T. Ho, “Temperature tuning of microcavity ring and disk resonators at 1.5 m,”Proc. IEEE LEOS Annu. Meet. Vol. 2, 162-163, 1997
[9] R. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and diskresonators with high finesse and 21.6nm free spectral range,” Opt. Lett., Vol. 22, pp. 1244-1246, 1997
[10] S. Hagness, “FDTD computational electromagnetics modeling of microcavity lasers and resonant optical structures,” Ph.D. Thesis NU, 1998
[11] M. K. Chin, and S. T. Ho, “Design and Modeling of Waveguide-Coupled Single-Mode Microring Resonators,” Journal of lightwave technology, Vol. 16, pp. 1433-1446, 1998
[12] S. T. Chiu, W. Pan, S. Suzuki, B. E. Little, S. Sato, Y. Kokubun, “Temperature Insensitive Vertically Coupled Microring Resonator Add/Drop Filters by Means of a Polymer Overlay,” IEEE Photon.Technol. Lett., Vol. 11, pp. 1138-1140, 1999
[13] P. P. Absil, J.V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Compact microring notch filters,” IEEE Photon.Technol. Lett., Vol. 12, pp. 398-400, 2000
[14] P. P. Absil, J.V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, G. Joneckis, and P. T. Ho, “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett., Vol. 25, 554-556, 2000
[15] P. P. Absil, “Microring resonators for wavelength division multiplexing and integrated photonics applications,” Ph.D. Thesis UMCP, 2000
[16] J. K. S. Poon, Y. Huang, G. T. Paloczi, and A. Yariv, “Soft Lithography Replica Molding of Critically Coupled Polymer Microring Resonators,” IEEE Photon. Technol. Lett., Vol. 16, pp. 2496-2498, 2004
[17] S. J. Choi, K. Djordjev, S. J. Choi, and P. D. Dapkus, “CH4-based dry etching of high Q InP microdisks, ” J. Vac. Sci. Technol. B, Vol. 20, pp. 301, 2002
[18] D. G. Rabus, “Realization of optical filters using ring resonators with integrated semiconductor optical amplifiers in GaInAsP/InP,” Der Andere Verlag, 2002
[19] S. J. Choi, K Djordjev, S. J. Choi, and P. D. Dapkus, “Microdisk laser vertically coupled to output waveguides,” IEEE Photon.Technol. Lett., Vol. 15, pp. 1330-1332, 2003
[20] K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Gain trimming of the resonant characteristics in vertically coupled InP microdisk switches,” Appl. Phys. Lett., Vol. 80, pp. 3467, 2002
[21] K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Active semiconductor microdisk devices,” IEEE J. Lightwave Technol., Vol. 20, pp. 105, 2002
[22] K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Vertically coupled InP microdisk switching devices with electroabsorptive active regions,” IEEE Photon. Technol. Lett., Vol. 14, pp. 1115-1117, 2002
[23] K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Study of the effects of the geometry on the performance of vertically coupled InP microdisk resonators,” IEEE J. Lightwave Technol., Vol. 20, pp. 1485, 2002
[24] K.Djordjev, S. J.Choi, S. J.Choi, and P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett., Vol. 14, pp. 828-830, 2002
[25] K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “High-Q vertically coupled InP microdisk resonators,” IEEE Photon. Technol. Lett., Vol. 14, pp. 331-333, 2002
[26] T. A. Ibrahim, “Nonlinear optical semiconductor micro ring resonators,” Ph.D. Thesis UMC, 2003
[27] R. Grover, T. A. Ibrahim, , T. N. Ding, Y. Leng, L. C. Kuo, S. Kanakaraju, K. Amarnath, L. C. Calhoun, and P. T. Ho, “Laterally coupled InP-based single mode micro racetrack notch filter,” IEEE Photon. Technol. Lett., Vol. 15, pp. 1082-1084, 2003
[28] F. Tan, ”Integrated optical filters based on microring resonators,” Ph.D. Thesis UT, 2004
[29] K. R. Hiremath, “Coupled mode theory based modeling and analysis of circular optical microresonators,” Ph.D. Thesis UT, 2005
[30] A. Leinse, “Polymeric microring resonator based electro optic modulator,” Ph.D. Thesis UT, 2005
[31] V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature, Vol. 431, pp. 1081-1084, 2004
[32] Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature Vol. 435, pp. 325-327, 2005
[33] T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q ring resonators in thin silicon-on-insulator,” Appl. Phys. Lett., Vol. 85, pp. 3346-3347, 2004
[34] K. Preston, J. T. Robinson, and M. Lipson, “Slot Waveguide Cavities for Electrically-Pumped Silicon-Based Light Sources,” IEEE Laser and Electro-Optics, pp. 1-2, 2008
[35] J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonator in chalcogenide glass for sensing,” Opt. Lett., Vol. 33, pp. 2500-2502, 2008
[36] A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett., Vol. 37, pp.4236-4238, 2012
[37] L. A. M. Berea, F. Vallini, T. P. M. Alegre, G. S. Wiederhecker, and N. C. Frateschi, “Enhanced Q with Internally Coupled Microring Resonators,” IEEE Laser and Electro-Optics, pp. 1-2, 2013
[38] Y. Long, and J. Wang, “Optically-controlled extinction ratio and Q-factor tunable silicon microring resonators based on optical forces,” Scientific Reports, Vol. 4, pp. 5409, 2014
[39] D. P. Cai, J. H. Lu, C. C. Chen, C. C. Lee, C. E. Lin, and T. J. Yen, “High Q-factor microring resonator wrapped by the curved waveguide,” Scientific Reports, Vol 5, pp.10078-1 -10078-8, 2015
[40] B. E. Little, S. T. Chu, W. Pan, D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, “Vertically Coupled Glass Microring Resonator Channel Dropping Filters,” IEEE Photonics Tech. Lett., Vol. 11, pp. 215-217, 1999
[41] J. K. S. Poon, Y. Huang, G. T. Paloczi, and A. Yariv, “Soft Lithography Replica Molding of Critically Coupled Polymer Microring Resonators,” IEEE Photonics Tech. Lett., Vol. 16, pp. 2496-2498, 2004
[42] T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express, Vol. 12, pp. 1437-1442, 2004
[43] C.Y. Chao, and L. J. Guo, “Biochemical Sensors Using High-Q Polymer Microring Resonators Fabricated by an Imprinting Technique,” Appl. Phys. Lett., Vol. 83, pp.1527-1529, 2003
[44] K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Optics express, Vol. 15, pp. 7610-7615, 2007
[45] Z. Zhang, M. Dainese, M. Chacinski, L. Wosinski, and M. Qiu, “High-quality-factor micro-ring resonator in amorphous-silicon on insulator structure,” ECIO, pp.329-332, 2008
[46] L. A. M. Barea, F. Vallini, T. P. M. Alegre, G. S. Wiederhecker, and N.C. Frateschi, “Enhanced Q with Internally Coupled Microring Resonators, ” IEEE Lasers and Electro-Optics, pp. 1-2, 2013
[47] A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films, ” Appl. Phys. Lett., Vol. 107, pp. 1411-1413, 2015
[48] E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani and A. Adibi, “Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelength,” Opt. Express, Vol. 18, pp. 2127-2136, 2010
[49] L. Bi, J. Hu, L. Kimerling, and C. A. Ross, “Fabrication and characterization of As2S3/Y3Fe5O12 and Y3Fe5O12/SOI strip-loaded waveguides for integrated optical isolated optical isolator applications,” Proc. of SPIE, Vol. 7604, pp. 1-10, 2010
[50] S.T. Chu, W. Pan, S. Sato, T. Kaneko, B. E. Little, and Y. Kokubun, “Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay,” Photon.Technol. Lett., Vol. 11, pp. 688-690, 1999
[51] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol., Vol. 15, pp. 998-1005, 1997.
[52] P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis,and P.-T. Ho, “Compact microring notch filters,” IEEE Photon.Technol. Lett., Vol. 12, pp. 398-400, 2000
[53] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping Filters,” J. Lightw. Technol., Vol. 15, pp. 998-1005, 1997.
[54] V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature, Vol. 431, pp. 1081-1083, 2004.
[55] Xiao, S., et al., A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion. Opt. Express, Vol. 15, pp. 14765-14771, 2007.
[56] Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, Vol. 435, pp. 325–327, 2005.
[57] F. Rana, C. Manolatou, and R. J. Ram, “Microring-Resonator-Based Widely Tunable Lasers,” IEEE Journal of quantum electronics Vol., 15, pp. 545-554, 2002
[58] S. Park, S. S. Kim, L. Wang, and S. T. Ho, “Single-Mode Lasing Operation Using a Microring Resonator as a Wavelength Selector,” IEEE Journal of quantum electronics, Vol. 38, pp. 270-273, 2002
[59] A. Arbabi, and L. L. Goddard, “Single wavelength microring laser,” accepted for presentation at CLEO: 2013, 2013
[60] C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” IEEE J. Lightwave Technol., Vol. 24, pp. 1395-1402, 2006
[61] E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto,“Sensor based on an integrated optical microcavity,” Opt. Lett., Vol. 27, pp. 512-514, 2002
[62] S. Y. Cho and N. M. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett., Vol. 18, pp. 2096-2098, 2006
[63] I. Kiyat, C. Kocabas, and A. Aydinli, “Integrated micro-ring resonator displacement sensor for scanning probe microscopy,” J. Micromech. Microeng., Vol. 14, pp. 374-381, 2004
[64] W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang,and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” App. Phys. Lett., Vol. 85, pp. 3666-3668, 2004
[65] S. Ashkenazi, C. Y. Chao, L. J. Guo, and M. O’Donnell, “Ultrasound detection using polymer microring optical resonator,” App. Phys. Lett., Vol. 85, pp. 5418-5420, 2004
[66] B. Bhola, H. C. Song, H. Tazawa, and W. H. Steier, “Polymer micro-resonator strain sensors,” IEEE Photon. Technol. Lett., Vol. 17, pp. 867-869, 2005
[67] N. Pornsuwancharoen, N. Sangwara, and P. Yupapin, “Generalized fast and slow lights using multi-state microring resonators for optical wireless links,” Optic-International Journal for Light and Electron Optics, Vol. 121, pp. 1721-1724, 2009
[68] G.P. Agrawal, Fiber-Optic Communication Systems, 4th edition., WILEY, 2010.
[69] H.L. Hsieh, and C.C. Chen, “Design of Micro Ring Resonator to improve Q factor,” OPT, 2010
[70] H.L. Hsieh, and C.C. Chen, “Study of loss in micro ring resonator,” IPC, 2011
[71] B. E. Little, J. Foresi, H. A. Haus, E. P. Ippen, W. Greene, and S.T. Chu, “Ultra-compact Si/SiO2 micro-ring resonator channel dropping filter,” IEEE Photon. Technol. Lett., Vol. 10, pp. 549-551, 1998.
[72] D. Rafidazeh, J. P. Zhag, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6 nm free spectral range,” Opt. Lett., Vol. 22, pp. 1244-1246, 1997.
[73] D. V. Tishinin, I. Kim, A. E. Bond, and P. D. Dapkus, “Novel fabrication process for vertical resonant coupler with precise coupling efficiency control,” IEEE LEOS, Vol. 1, pp. 93-94, 1998
[74] S. Suzuki, K. Shuto, and Y. Hibino, “Integrated optic ring resonators with two stacked layers of slica waveguides on Si,” IEEE Photon. Technol. Lett., Vol. 4, pp. 1256-1258, 1992.
[75] B. E. Little, S. T. Chu, W. Pan, D. Ripin, T. Kaneko, Y. Kokubun, E. Ippen, “Vertically coupled glass microring resonator channel dropping filters,” IEEE Photon. Technol. Lett., Vol. 11, pp. 215-217, 1999.
[76] V. Subramaniam, G. N. D. Brabander, D. H. Naghski, and Joseph T. Boyd, “Measurement of Mode Field Profiles and Bending and Transition Losses in Curved Optical Channel Waveguides,” IEEE J. Lightwave Technol., Vol. 15, pp. 990-997, 1997
[77] B. Howley, X. Wang, R.T. Chen, and Y. Chen, “Experimental evaluation of curved polymer waveguides with air trenches and offsets,” J. Appl. Phys., Vol. 100, pp. 023114-1 -023114-6 , 2006
[78] Z. Gu, S. Xiao, S. Liu, S. Sun, K. Wang, and Q. Song, “Photon hopping and nanowire based hybrid plasmonic waveguide and ring-resonator,” Scientific Reports, Vol. 5, pp. 9171-1 -9171-8, 2015
[79] Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express, Vol. 16, pp. 4309-4315, 2008
[80] D. G. Rabus, “Integrated ring resonator : the compendium,” Chapter 2,3 Springer, 2007
[81] A. Yariv “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett., Vol. 36, pp. 321-322, 2000
[82] L. F. Stokes, M. Ghodorow, and H. J. Shaw, “All-single-modefiberresonator,” Opt. Lett., Vol. 7, pp. 288-290, 1982
[83] K. Okamoto, “Fundamentals of Optical Waveguide, ” First edition, Academic.
[84] K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations,” IEEE Tran. on Ant. and Pro, Vol. 14, pp. 302-307, 1966
[85] U. Leonhardt, “A laboratory analogue of the event horizon using slow light in an atomic medium,” Nature, Vol. 415, pp. 406-409, 2002
[86] A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: Propagation dynamics,” Phys. Rev. Lett., Vol 74, pp. 2447-2450, 1995
[87] O. Svelto, “Principles of Lasers,” David C. Hanna, New York Plenum, pp. 159, 1989
[88] C. W. Tseng, C. W. Tsai, K. C. Lin, M. C. Lee, and Y. J. Chen , “Narrow gap width induced radiation loss on waveguide coupled microring,” IEEE Group IV Phon., pp.291-293, 2012
[89] F. Xia, L. Sekaric and Y. A. Vlasov, “Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators,” Opt. Express, Vol. 14, pp. 3872-3876, 2006
[90] RSoft Inc.,”FullWAVE3.0.1 User Guide, ”
指導教授 陳啟昌、張正陽(Chen, Chii-Chang Chang, Jenq-Yang) 審核日期 2016-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明