博碩士論文 102226021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:34.200.218.187
姓名 謝永祥(Yung-Hsiang Hsieh)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 應用石墨烯元件於水氣穿透率量測之研究
(Reserch of graphene-based device applied in water vapor transmission ate measurement)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2020-8-27以後開放)
摘要(中) 軟性有機發光二極體顯示器(Flexible organic light emitting diode display)為下一個時代的顯示器的明日之星,但是其對水氣及氧氣極度敏感,因此封裝是一個不可忽略且極度重要的課題。水氣穿透率(單位: g/m2/day)的大小用來評估封裝有機發光二極體的品質,而估計封裝有機發光二極體其水氣穿透率最小為10-6 g/m2/day,目前普遍的量測方法都有長量測時間或是不可重覆使用的問題。近年來,石墨烯被發現是一個優良的氣體感測器,具備反應時間迅速及靈敏的性質,其原理在於氣體分子接觸石墨烯時會有電荷轉移之效應(Charge transfer effect)。故本研究應用石墨烯元件於水氣穿透率的量測,使用化學氣相沉積法(Chemical vapor deposition)成長石墨烯,並使用遮罩鍍製電極。固定偏壓為1伏特觀察元件電流藉由電荷轉移改變做為量測,接著運用理論及邏輯推演的模型擬合,跟實驗的曲線近乎吻合,且量測時間比目前普遍的量測方法還要少許多。相信未來可以成功以石墨烯量測法做為一個新、快速且準確的量測封裝有機發光二極體之水氣穿透率的方法。本研究以電阻平均2 ~2.5千歐姆的石墨烯元件,在量測環境35 ± 3℃ 相對濕度99.9 %下,量測出水氣穿透率5 x 10-4 g/m2/day的樣品,其石墨烯元件電流變化率有72 %變化,其量測時間約一小時。
摘要(英) Flexible organic light emitting diode display is a candidate for next generation display device but the water vapor and oxygen is easy to damage the organic element. Therefore, the organic element needs barrier film to protect it. Water vapor transmission rate (WVTR, unit: g/m2/day)is used to evaluate the quality for encapsulation of organic element, which is estimated 10-6 g/m2/day There are two main ways to measure the WVTR for encapsulation of organic element but they have some disadvantages like that long time measurement and non-reusable. Recently, graphene is found to be a good gas sensor. Graphene has fast response time and sensitive characteristics. The charge transfer between the molecules and the graphene surface when the molecules absorb on graphene is in seconds. In this study, we made a fast WVTR-measurement system by graphene-based device. The graphene-based device is prepared by transferred the graphene which is grown by chemical vapor deposition (CVD) on glass subtrate first and then deposited the metal electrode with mask. The source voltage of graphene-based device kept 1V. Calculating the change of device current due to charge transfer between the molecules and the graphene surface that can be converted to how many water molecules absorb on graphene. Using physically model to fit the measurement data, and the fitting is very similar to experiment results. In the future, the graphene-based device measurement can be a new, fast and accurate way to measure WVTR. In this studt, we use a graphene-based device with average resistance about 2 ~ 2.5 kohm to measure a sample with WVTR ~ 5 x 10-4 g/m2/day under test conition: temperatue 35 ± 3 ℃, relative humidity 85 % in about one hour. The current change rate at the device is 72 %.
關鍵字(中) ★ 水氣穿透率
★ 石墨烯
★ 電荷轉移
關鍵字(英) ★ water vapor transmission rate
★ graphene
★ charge transfer
論文目次 摘要………………………………………………………………………………………………………………………………….….I

Abstract……………………………………………..………………………………….……………..…..…….II

致謝 ……………………………………………………………………………………………………………………………….III

總目錄………………………………………………………………………………………………………………………….….V

圖目錄…………………………………………………………………………………………………………………….…….VII

表目錄………………………………………………………………………………………………………………………..…….X

第一章 緒論 1

1-1 前言…………………………………………………………………………………………………….………….1

1-2 研究內容 10

第二章 基礎理論與文獻回顧 11

2-1 石墨烯介紹 11

2-2 石墨烯生成方法 12

2-3 石墨烯的化學摻雜 (Chemcial doping of graphene) 14

2-4 離子轉移(Ionic tansfer) 19

2-5 石墨烯材料性質 20

2-6 歐姆接觸(Ohm contact) 22

第三章 實驗方法與儀器原理 23

3-1 實驗流程 23

3-2 實驗設備 ……………………………………………………………………………………………………….23

3-2-1 製程設備 24

3-2-2 電子槍蒸鍍系統 24

3-2-3 水氣穿透率量測儀 25

3-2 實驗步驟 ……………………………………………………………………………………………………….26

3-2-1 石墨烯元件製作及分析: 26

3-2-2 量測水氣穿透率 28

3-3 量測儀器原理 30

3-3-1 拉曼光譜儀 30

第四章 結果與討論 33

4-1 石墨烯元件的性質分析 33

4-1-1 石墨烯電性分析 33

4-1-2 石墨烯元件的拉曼光譜圖 34

4-2 載子氣體的選擇 34

4-3 元件量測流程及結果討論 39

4-4 理論推導及量化擬合 44

4-5 誤差討論及改善方法 50

第五章 結論 53

參考文獻 54

參考文獻 1. http://www.wesrch.com/wiki-1207-glass-based-versus-flexible-oled-structure.

2. Groner, M.D., et al., Gas diffusion barriers on polymers using Al[sub 2]O[sub 3] atomic layer deposition. Applied Physics Letters, 2006. 88(5): p. 051907.

3. http://oled-a.org/news_details.cfm?ID=760.

4. Isengard, H.-D., Water content, one of the most important properties of food. Food control, 2001. 12(7): p. 395-400.

5. Schubert, S., et al., Electrical calcium test for moisture barrier evaluation for organic devices. Rev Sci Instrum, 2011. 82(9): p. 094101.

6. Carcia, P.F., et al., Ca test of Al[sub 2]O[sub 3] gas diffusion barriers grown by atomic layer deposition on polymers. Applied Physics Letters, 2006. 89(3): p. 031915.

7. Chen, T.N., et al., High-Performance Transparent Barrier Films of SiO[sub x]∕SiN[sub x] Stacks on Flexible Polymer Substrates. Journal of The Electrochemical Society, 2006. 153(10): p. F244.

8. Reese, M.O., A.A. Dameron, and M.D. Kempe, Quantitative calcium resistivity based method for accurate and scalable water vapor transmission rate measurement. Rev Sci Instrum, 2011. 82(8): p. 085101.

9. Xuesong Li Yanwu Zhu, W.C., Mark Borysiak, Boyang Han and R.D.P. David Chen, † Luigi Colombo,, and Rodney S. Ruoff, Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett, 2009. 9(12): p. 4359-4363.

10. Schedin, F., et al., Detection of individual gas molecules adsorbed on graphene. Nat Mater, 2007. 6(9): p. 652-5.

11. Ren, Y., et al., Detection of sulfur dioxide gas with graphene field effect transistor. Applied Physics Letters, 2012. 100(16): p. 163114.

12. Yavari, F., et al., Tunable bandgap in graphene by the controlled adsorption of water molecules. Small, 2010. 6(22): p. 2535-8.

13. 吳盈樺, 隨機位能對單層石墨烯和石墨烯島嶼電子特性. 成功大學物理學系學位論文, 2012: p. 1-57.

14. 林永昌、呂俊頡、鄭碩方、邱博文,

石墨烯之電子能帶特性與其元件應用 物理雙月刊, 2011. 33(2): p. 191-202.

15. Andrei, E.Y., G. Li, and X. Du, Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport. Rep Prog Phys, 2012. 75(5): p. 056501.

16. K. S. Novoselov, A.K.G., S. V. Morozov, D. Jiang, and S.V.D. Y. Zhang, I. V. Grigorieva, A. A. Firsov, . SCIENCE, 2004. 306: p. 666-669.

17. Zhang, Y., et al., Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Applied Physics Letters, 2005. 86(7): p. 073104.

18. Orofeo, C.M., et al., Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene. Carbon, 2012. 50(6): p. 2189-2196.

19. Hiroki Ago, Yoshito Ito, Noriaki Mizuta, Kazuma Yoshida Baoshan Hu, Carlo M. Orofeo, and K.-i.I. Masaharu Tsuji, and Seigi Mizuno, . Nano Lett, 2010. 4(12): p. 7407-7414.

20. Amini, S., et al., Growth of large-area graphene films from metal-carbon melts. Journal of Applied Physics, 2010. 108(9): p. 094321.

21. Ago, H., et al., Catalytic Growth of Graphene: Toward Large-Area Single-Crystalline Graphene. The Journal of Physical Chemistry Letters, 2012. 3(16): p. 2228-2236.

22. Liu, H., Y. Liu, and D. Zhu, Chemical doping of graphene. J. Mater. Chem., 2011. 21(10): p. 3335-3345.

23. Leenaerts, O., B. Partoens, and F. Peeters, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Physical Review B, 2008. 77(12).

24. Andrew C. Crowther, A.G., Naeyoung Jung, and Louis E. Brus, . Nano Lett, 2012. 6(2): p. 1865-1875.

25. Chen, S., et al., Adsorption/desorption and electrically controlled flipping of ammonia molecules on graphene. New Journal of Physics, 2010. 12(12): p. 125011.

26. Ci, L., et al., Atomic layers of hybridized boron nitride and graphene domains. Nat Mater, 2010. 9(5): p. 430-5.

27. Lin, W.-D., H.-M. Chang, and R.-J. Wu, Applied novel sensing material graphene/polypyrrole for humidity sensor. Sensors and Actuators B: Chemical, 2013. 181: p. 326-331.

28. Meng-Chu Chen, C.-L.H., and Ting-Jen Hsueh, . IEEE ELECTRON DEVICE LETTERS, 2014. 35(5).

29. Kim, K.S., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009. 457(7230): p. 706-10.

30. Zhao, J., G.-Y. Zhang, and D.-X. Shi, Review of graphene-based strain sensors. Chinese Physics B, 2013. 22(5): p. 057701.

31. E.G Steward, B.p.C., E.A.Kellett, . nature, 1960. 187: p. 1016.

32. Yoon, D., Y.W. Son, and H. Cheong, Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett, 2011. 11(8): p. 3227-31.

33. Wang, Y., et al., Nitrogen, Hydrogen, Carbon Dioxide, and Water Vapor Sorption Properties of Three-Dimensional Graphene. Journal of Chemical & Engineering Data, 2011. 56(3): p. 642-645.

34. ASTM, Standard Test Method for

Water Vapor Transmission Rate Through Plastic Film and

Sheeting Using a Modulated Infrared Sensor. F1249 – 06, 2011.

35. Malard, L.M., et al., Raman spectroscopy in graphene. Physics Reports, 2009. 473(5-6): p. 51-87.

36. K. S. W. SING (UK, C.D.H.E.U., et al., . Pure & App!. Chem.,, 1985. 57(4): p. 603-617.

指導教授 李正中(Cheng-Chung Lee) 審核日期 2015-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明