博碩士論文 102226028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:34.204.173.45
姓名 黃文正(Wen-zheng Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 基於取樣完整性評估螺旋式多針孔 Micro-SPECT之掃描軌跡設計
(Helical Trajectory Design of Multi-Pinhole Micro-SPECT Based on Sampling Completeness)
相關論文
★ 以GATE模型及系統矩陣演算法重建SPECT螺旋影像★ LED檯燈視覺舒適度研究
★ 表面電漿共振系統之相位擷取與分析★ 人眼眼球模型與視覺表現之模擬分析研究
★ 白光LED之視覺生理效應評估★ 不同色溫螢光燈用於辦公室照明之視覺效應研究
★ 表面電漿共振儀之動態相位偵測技術 與微量生物分子檢測應用★ 二次通過成像架構量測人眼的光學系統品質
★ 週期性奈米金屬結構對拉曼散射訊號增強之研究★ 日眩光要因分析研究
★ 非球面檢測之迭代相移干涉與子孔徑相位接合演算法開發★ 應用可容忍隨機位移之相移干涉術於相位式表面電漿共振系統之穩定度增進
★ 以偵測任務及系統效能評估找尋多針孔微單光子放射電腦斷層掃描系統之最佳化配置★ 結合表面電漿共振及溫度控制於免疫球蛋白鍵結之檢測分析
★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數★ 多陽極光電倍增管閃爍相機之訊號讀出系統與高效最大可能性位置估算演算法開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究中,使用取樣完整性係數(SCC, Sampling Completeness Coefficient)評估單光子放射電腦斷層掃瞄系統(SPECT)在單針孔及多針孔下,針對偵測器所作之圓形軌跡及螺旋軌跡掃描,其影像擷取及三維影像重建的適切性,藉以優化掃描軌跡來提高實驗數據之準確性。更進一步,可以評估實驗所需要之影像品質,在預備實驗的階段先作影像預測評估,減低錯誤率,提高整體實驗規劃之效率。

我們所使用之取樣完整性係數原理來自於圖伊條件(Tuy’s Condition),起源於電腦斷層掃描系統(CT),藉由系統架構之相似性以及偵測器位置的改變,修改應用至單光子放射電腦斷層掃描系統。再於本實驗室提出之單針孔及四針孔SPECT系統架構下,以本研究開發之繞行軌跡,由49×49mm2偵測器感測,發展小鼠全身造影的取樣完整性係數評估。

儀器控制方面,藉由LabVIEW使用含三軸線性平移台以及旋轉平台的定位控制系統,執行偵測器平均響應函數(MDRF, Mean Detector Response Function)實驗,並撰寫小鼠影像擷取實驗的儀控程式,使其兼具人性化及自動化設定。

摘要(英) In this study, a sampling completeness evaluation model for pinhole SPECT is proposed based on the Tuy’s condition in cone-beam CT: every plane intersected with the object space should also intersect the sampling orbit at least once. Since the sampling geometries are similar in cone-beam CT and pinhole SPECT, the focal point of cone-beam CT is substituted with the pinhole center of pinhole SPECT in the sampling completeness evaluation.The pitch limitation for helical trajectories in cone-beam CT is also modified to incorporate the magnification in pinhole SPECT imaging.

The Sampling Completeness Coefficient (SCC) values are calculated by the proposed model for single- and multi-pinhole Micro-SPECT systems to evaluate the performance of circular, single-helix and double-helix trajectories. According to the reconstructions of 7-disk Defrise phantom with the circular-orbit 4-pinhole SPECT systems, the axial distortion exists in the regions where SCCs are less than 0.9. Therefore, the sufficient sampling threshold is set at SCC greater than or equal to 0.9. For mouse whole-body imaging in a cylindrical Field of View (FOV) enclosed by a 40×40×100 mm3 cuboid with a 4-pinhole SPECT system, two helical scanning modes, the single helix and double helix, are compared with their SCC maps. The results show that the helical 4-pinhole SPECT system with double helix has 96.9% voxels satisfying the SCC threshold. A 1/2 extended pitch at both ends of the FOV further increases the sufficient sampling volume to 99.7%.

In the instrument control part, all the data acquisition routines are programmed in the LabVIEW environment to attain automation and user-friendly interfaces. A positioning system with three orthogonal linear stages and one rotary stage is utilized in the experiments for the Mean Detector Response Function (MDRF), the system matrix, and mouse whole-body imaging.

關鍵字(中) ★ 取樣完整性
★ 單光子放射電腦斷層掃描
★ 螺旋
關鍵字(英) ★ sampling completeness
★ single-photon emission computed tomography
★ helical
論文目次 中文摘要 i

Abstract ii

誌謝 iv

目錄 v

圖目錄 viii

表目錄 xv

第一章 緒論 1

1.1 研究背景 1

1.2研究目的 2

1.3論文架構 3

第二章 研究背景之基本理論 4

2.1 核子醫學影像 4

2.1.1正子放射斷層掃描(PET) 5

2.1.2單光子放射電腦斷層掃描系統(SPECT) 7

2.2 伽瑪射線偵測器(Gamma Camera) 10

2.2.1 偵測器元件與物理特性 10

2.3數據完整性(Data Completeness)與圖伊條件(Tuy′s Condition) 17

2.4螺旋式電腦斷層掃描系統之螺距限制(Pitch Limitation) 23

2.4.1平行光束電腦斷層掃描系統(Parallel-Beam CT) 24

2.4.2 扇形光束電腦斷層掃描系統(Fan-Beam CT) 25

2.4.3 錐束電腦斷層掃描系統(Cone-Beam CT) 27

2.4.針孔式單光子放射電腦斷層掃描系統(Pinhole SPECT) 27

第三章 取樣完整性係數模型建立 29

3.1 Pinhole SPECT系統配置 29

3.2體素(Voxel)取樣完整性係數評估 33

3.3 3D取樣完整性係數分佈圖(Sampling Completness Coefficient Map) 39

3.4單針孔SPECT系統架構 41

3.4.1 單針孔圓形軌跡模型 41

3.4.2 單針孔螺旋軌跡模型 48

3.5 四針孔SPECT系統架構 69

3.5.1 四針孔圓形軌跡模型 70

3.5.2 四針孔螺旋軌跡模型 80

3.5.3 高於SCC閥值之3D可重建體積 88

第四章 適應性小動物SPECT系統之機電控制 94

4.1 實驗架構 94

4.1.1 MDRF 校準實驗 94

4.1.2 影像系統機構 98

4.2 儀控程式 101

4.2.1 MDRF校準實驗 101

4.2.2 小鼠影像擷取程式 107

第五章 結論與未來展望 112

參考文獻 114

參考文獻 [1] Available: http://www.iplab.tcu.edu.tw/data/X_ray/X_hi.htm

[2] 陳遠光等編著,FDG PET/CT的基本原理,力大圖書有限公司,台北市,民國九十八年三月

[3] C. Y. Chen,“Development of GPU-based Position Estimator and Image Reconstruction Algorithms for Micro-SPECT Systems” , National Central University, Master thesis, 2014

[4] G. L. Zeng, G. T. Gullberg, “Helical SPECT Using Axially Truncated Data”, IEEE Trans.Nucl. Sci.vol.46,no.6, 1999.

[5] M. N. Wernick and J. N. Aarsvold, “Emission Tomagraphy The Fundamentals of PET and SPECT ” , ELSEVIER Academic Press, 2004.

[6] G. L. Zeng, “A Skew-Slit Collimator for Small-Animal SPECT”, Journal of Nuclear Medicine Technology, 36, 4, 207-212, 2008.

[7] S. D. Sordo et al., “Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications” , Sensor, 9, 3491-3526, 10.3390/s90503491, 2009.

[8] Hamamatsu Photonics K.K Editorial Committee, Photomultiplier Tubes Basics and Applications, three edition, Hamamatsu Photonics K.K Electron Tube Division, Japan, 2007

[9] Available: http://en.wikipedia.org/wiki/Charge-coupled_device

[10] Available: http://www.hamamatsu.com/us/en/product/category/3100/3002/H8500C/index.html

[11] G. L. Zeng, Medical Image Reconstruction A Conceptual Tutorial, High Education Press, Beijing, 2010

[12] W. T. Lin, “Configuration Optimization for Multi-pinhole Micro-SPECT System by Detection Tasks and System Performance Evaluations”, National Central University, Master thesis, 2013.

[13] G. S. P. Mok, Y. Wang, B. M. W. Tsui, “Quantification of the multiplexing effects in multi-pinhole small animal SPECT: a simulation study” , IEEE Trans. Nucl. Sci. 56 2636-2643, 2009.

[14] B. Liu, J. Bennett, G. Wang, “Completeness map evaluation demonstrated with candidate next-generation cardiac CT architectures”, Med. Phys. 39, May 2012.

[15] N. U. Schramm, G. Ebel, U. Engeland, T. Schurrat, M. Behe and T. M. Behr, “High-resolution SPECT using multipinhole collimation”, IEEE Trans. Nucl. Sci. 50 315–320, 2003

[16] J. Y. Hesterman, M. A. Kupinski, L. R. Furenlid, D. W. Wilson and H. H. Barrett, “The multi-module, multiresolution system (M3R): a novel small animal SPECT system”, Med. Phys. 34 987–93, 2007

[17] M. W. Lee, W.T. Lin and Y.C. Chen, “Design optimization of multi pinhole micro-SPECT configurations by signal detection tasks and system performance evaluations for mouse cardiac imaging”, Phys. Med. Biol. 60472-499, 2015.

[18] H. H. Barrett, K. J. Myers and S. Rathee, Foundations of image science, Wiley Interscience, Hoboken, 2003.

[19] H. H. Barrett, Small Animal SPECT Imaging, Springer, New York, NY, 2005.

[20] Y. C. Chen, “System Calibration and Image Reconstruction for a New Small-Animal SPECT System”, University of Arizona, PhD dissertation, 2006.

[21] J. Y. Hesterman, L. Caucci, M. A. Kupinski, H. H. Barrett, L. R. Furenlid,“Maximum-likelihood estimation with a contracting-grid search algorithm”, IEEE Trans. Nucl. Sci., 57, 3, 1077-1084, 2010.

[22] Y. L. Lee, “Development of Compact Readout Electronics and Efficient Maximum Likelihood Position Estimator for a Multi-Anode-PMT Scintillation Camera, National Central University, Master thesis, 2013.

指導教授 陳怡君(Yi-chun Chen) 審核日期 2015-8-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明