博碩士論文 102226037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.145.152.98
姓名 賴怡蒨(Yi-Chien Lai)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究
(Application of Colloidal Lithography on Patterned Electrode Vertical Organic Transistors)
相關論文
★ 有機高分子電化學發光元件★ 開孔電極結構對於垂直式有機電晶體電性影響之研究
★ 微米光柵壓印有機太陽能電池主動層之研究★ 有機波導結構的ASE現象研究以及共振腔結構的模擬
★ 利用金屬微共振腔研究光與有機激發態強耦合現象★ 多層式雙極有機場效電晶體之研究
★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究
★ 有機染料分子薄膜之光電特性研究★ 多層結構有機電晶體之研究
★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象★ 有機強耦合共振腔元件設計與發光量測系統架設之研究
★ 強耦合有機微共振腔之設計與研究★ 光激發有機極化子元件之製作與量測
★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究★ 光激發有機極化子元件之模擬與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文應用膠體微影技術於垂直有機電晶體中的開孔式源極,並研究垂直電晶體電流特性。對於垂直電晶體的開/關能力而言,源極的奈米孔洞結構與源極功函數/有機半導體的蕭特基能障為重要兩關鍵。利用膠體微影技術可獲得大面積(cm2)、高均勻性的單層奈米球膜,且製作出高密度和高均勻性的孔洞覆蓋率開孔源極。此外選擇高功函數之金和銀作為源極金屬,以及N型小分子有機半導體碳六十(C60)作為垂直電晶體之主動層,研究開孔源極的孔洞覆蓋率、金屬功函數對於垂直電晶體電性表現之影響。實驗結果發現,30 %孔洞覆蓋率可觀察到明顯的開/關表現,及藉由以全氟癸烷硫醇(PFDT)自組性單分子層修飾銀源極功函數來有效提升銀源極與C60間的蕭特基能障,相較於未經修飾的銀源極,可進一步壓抑關電流密度高達三個數量級。整體而言,經由優化銀源極的孔洞覆蓋率與功函數並鍍製適當厚度的C60主動層,其垂直電晶體的開/關比接近104和開電流密度可達1~10 mA/cm2,此電性表現在未來可進一步與OLED整合並應用於顯示器中。
摘要(英) This thesis investigates the application of colloidal lithography technique on patterned source electrode of vertical organic transistor and characterizes the devices electrical properties. For the on/off ability of vertical transistor, nanopatterned structure of source electrode and the Schottky barrier of source electrode/organics interface are two important factors. Large area (cm2) and high uniformity of nanosphere monolayer is obtained by utilizing the colloidal lithography method. Also, the high density and uniform hole surface coverage patterned electrode is demonstrated. The vertical transistor fabricated with high work function source electrode (Ag and Au) and N-type C60 small molecules semiconductor. We correlate the vertical transistor electrical performance with the hole surface coverage and the work function of patterned source electrode. From results of experiments, the transistor on/off performance with 30% hole surface coverage of source electrode is clearly observable. And, the Ag/C60 Schottky barrier is effectively increased by modifying Ag source electrode work function with PFDT self-assembled monolayer, which shows that the off current density of Ag/PFDT-source transistor can be a factor of 103 lower than Ag-source transistor. In summary, with optimized hole surface coverage, modified Ag source electrode work function, and sufficiently thick C60 active layer, the vertical transistor with on/off ratio of nearly 104 and the on current density of 1-10 mA/cm2 are demonstrated, which is promising for applications of OLED display technology in the future.
關鍵字(中) ★ 垂直式有機電晶體
★ 開孔電極
關鍵字(英) ★ vertical organic transistors
★ patterned electrode
論文目次 摘要 v
Abstract vi
誌謝 vii
目錄 viii
圖表目錄 x
第一章 緒論 1
1.1前言 1
1.1.1傳統有機薄膜電晶體 3
1.1.2蕭特基基底之垂直式電晶體 5
1.1.3研究動機與目的 9
第二章 基本理論 11
2.1奈米球成長機制-奈米開孔遮罩 11
2.1.1六方最密排列奈米球遮罩 12
2.1.2無序排列奈米球遮罩 14
2.2垂直有機電晶體操作機制-蕭特基電晶體[42] 17
2.2.1關狀態操作機制 19
2.2.2開狀態操作機制 22
2.2.3轉換特性曲線及開/關比 26
第三章 實驗方法與架構 27
3.1 元件結構介紹 27
3.1.1主動層材料 27
3.1.2垂直電晶體元件能階設計 29
3.1.3自組性硫醇分子修飾銀源極 30
3.2 實驗方法與製備 33
3.2.1垂直式有機電晶體之製備 33
3.2.2實驗儀器 37
第四章 結果與討論 41
4.1垂直式有機電晶體之開孔源極 41
4.1.1 單層聚苯乙烯奈米球膜成長結果 42
4.1.2 奈米級開孔源極 45
4.1.3 奈米級開孔源極結構之總結 48
4.2 垂直式有機電晶體之電性探討 49
4.2.1孔洞覆蓋率與銀源極垂直電晶體 50
4.2.2源極金屬功函數與垂直電晶體 53
4.2.3以硫醇分子修飾銀源極金屬功函數 56
4.2.4 垂直式有機場效電晶體之電性總結 65
第五章 結論與未來展望 67
參考文獻 69
參考文獻 [1] T. Sekitani, U. Zschieschang, H. Klauk, T. Someya, Flexible organic transistors and circuits with extreme bending stability, Nature materials, 9 (2010) 1015-1022.
[2] H. Sirringhaus, N. Tessler, R.H. Friend, Integrated Optoelectronic Devices Based on Conjugated Polymers, Science, 280 (1998) 1741-1744.
[3] R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, M. Muccini, Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes, Nature materials, 9 (2010) 496-503.
[4] J. Zaumseil, R.H. Friend, H. Sirringhaus, Spatial control of the recombination zone in an ambipolar light-emitting organic transistor, Nature materials, 5 (2005) 69-74.
[5] Z. Xu, S.-H. Li, L. Ma, G. Li, Y. Yang, Vertical organic light emitting transistor, Applied Physics Letters, 91 (2007) 092911.
[6] K. Nakamura, T. Hata, A. Yoshizawa, K. Obata, H. Endo, K. Kudo, Metal-insulator-semiconductor-type organic light-emitting transistor on plastic substrate, Applied Physics Letters, 89 (2006) 103525.
[7] K. Nakamura, T. Hata, A. Yoshizawa, K. Obata, H. Endo, K. Kudo, Improvement of Metal–Insulator–Semiconductor-Type Organic Light-Emitting Transistors, Japanese Journal of Applied Physics, 47 (2008) 1889-1893.
[8] C.-Y. Chen, Y.-C. Chao, H.-F. Meng, S.-F. Horng, Light-emitting polymer space-charge-limited transistor, Applied Physics Letters, 93 (2008) 223301.
[9] B. Liu, M.A. McCarthy, Y. Yoon, D.Y. Kim, Z. Wu, F. So, P.H. Holloway, J.R. Reynolds, J. Guo, A.G. Rinzler, Carbon-Nanotube-Enabled Vertical Field Effect and Light-Emitting Transistors, Advanced Materials, 20 (2008) 3605-3609.
[10] M.A. McCarthy, B. Liu, E.P. Donoghue, I. Kravchenko, D.Y. Kim, F. So, A.G. Rinzler, Low-voltage, low-power, organic light-emitting transistors for active matrix displays, Science, 332 (2011) 570-573.
[11] S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara, Y. Iwasa, Fabrication and characterization of C60 thin-film transistors with high field-effect mobility, Applied Physics Letters, 82 (2003) 4581.
[12] J. Puigdollers, M. Della Pirriera, A. Marsal, A. Orpella, S. Cheylan, C. Voz, R. Alcubilla, N-type PTCDI–C13H27 thin-film transistors deposited at different substrate temperature, Thin Solid Films, 517 (2009) 6271-6274.
[13] S. Tatemichi, M. Ichikawa, T. Koyama, Y. Taniguchi, High mobility n-type thin-film transistors based on N,N[sup ʹ]-ditridecyl perylene diimide with thermal treatments, Applied Physics Letters, 89 (2006) 112108.
[14] C. Rolin, K. Vasseur, S. Schols, M. Jouk, G. Duhoux, R. Müller, J. Genoe, P. Heremans, High mobility electron-conducting thin-film transistors by organic vapor phase deposition, Applied Physics Letters, 93 (2008) 033305.
[15] A. Facchetti, M. Mushrush, H.E. Katz, T.J. Marks, n-Type Building Blocks for Organic Electronics: A Homologous Family of Fluorocarbon-Substituted Thiophene Oligomers with High Carrier Mobility, Advanced Materials, 15 (2003) 33-38.
[16] D. Knipp, R.A. Street, A. Völkel, J. Ho, Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport, Journal of Applied Physics, 93 (2003) 347.
[17] S.E. Fritz, S.M. Martin, C.D. Frisbie, M.D. Ward, M.F. Toney, Structural Characterization of a Pentacene Monolayer on an Amorphous SiO2 substrate with Grazing incidence X ray Diffraction, J. AM. CHEM. SOC. , 126 (2004) 4084-4085.
[18] U. Zschieschang, F. Ante, D. Kälblein, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, J.B. Nimoth, H. Klauk, Dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) thin-film transistors with improved performance and stability, Organic Electronics, 12 (2011) 1370-1375.
[19] T. Yamamoto, K. Takimiya, Facile Synthesis of Highly π-Extended Heteroarenes,Dinaphtho[2,3-b:2′,3′-f]chalcogenopheno[3,2-b]chalcogenophenes,and Their Application to Field-Effect Transistors, J. AM. CHEM. SOC., 129 (2007) 2224–2225.
[20] S.Y. Yang, K. Shin, C.E. Park, The Effect of Gate-Dielectric Surface Energy on Pentacene Morphology and Organic Field-Effect Transistor Characteristics, Advanced Functional Materials, 15 (2005) 1806-1814.
[21] O. Acton, M. Dubey, T. Weidner, K.M. O’Malley, T.-W. Kim, G.G. Ting, D. Hutchins, J.E. Baio, T.C. Lovejoy, A.H. Gage, D.G. Castner, H. Ma, A.K.Y. Jen, Simultaneous Modification of Bottom-Contact Electrode and Dielectric Surfaces for Organic Thin-Film Transistors Through Single-Component Spin-Cast Monolayers, Advanced Functional Materials, 21 (2011) 1476-1488.
[22] L.-L. Chua, J. Zaumseil, J.-F. Chang, E.C.-W. Ou, P.K.-H. Ho, H. Sirringhaus, R.H. Friend, General observation of n-type field-effect behaviour in organic semiconductors, Nature, 434 (2005) 192-199.
[23] Y.-C. Chao, H.-F. Meng, S.-F. Horng, Polymer space-charge-limited transistor, Applied Physics Letters, 88 (2006) 223510.
[24] Y.-C. Chao, H.-F. Meng, S.-F. Horng, C.-S. Hsu, High-performance solution-processed polymer space-charge-limited transistor, Organic Electronics, 9 (2008) 310-316.
[25] Y.-C. Chao, M.-C. Ku, W.-W. Tsai, H.-W. Zan, H.-F. Meng, H.-K. Tsai, S.-F. Horng, Polymer space-charge-limited transistor as a solid-state vacuum tube triode, Applied Physics Letters, 97 (2010) 223307.
[26] K. Fujimoto, T. Hiroi, M. Nakamura, Organic Static Induction Transistors with Nano-Hole Arrays Fabricated by Colloidal Lithography, e-Journal of Surface Science and Nanotechnology, 3 (2005) 327-331.
[27] K. Fujimoto, T. Hiroi, K. Kudo, M. Nakamura, High-Performance, Vertical-Type Organic Transistors with Built-In Nanotriode Arrays, Advanced Materials, 19 (2007) 525-530.
[28] L. Ma, Y. Yang, Unique architecture and concept for high-performance organic transistors, Applied Physics Letters, 85 (2004) 5084.
[29] A.J. Ben-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G.L. Frey, N. Tessler, Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates, Applied Physics Letters, 95 (2009) 213301.
[30] A.J. Ben-Sasson, N. Tessler, Unraveling the physics of vertical organic field effect transistors through nanoscale engineering of a self-assembled transparent electrode, Nano Lett, 12 (2012) 4729-4733.
[31] M.G. Lemaitre, E.P. Donoghue, M.A. McCarthy, B. Liu, S. Tongay, B. Gila, P. Kumar, R.K. Singh, B.R. Appleton, A.G. Rinzler, Improved Transfer of Graphene for Gated Schottky-Junction, Vertical, Organic, Field-Effect Transistors, ACS Nano, 6 (2012) 9095-9102.
[32] M.A. McCarthy, B. Liu, A.G. Rinzler, High current, low voltage carbon nanotube enabled vertical organic field effect transistors, Nano Lett, 10 (2010) 3467-3472.
[33] A.J. Ben-Sasson, D. Azulai, H. Gilon, A. Facchetti, G. Markovich, N. Tessler, Self-assembled metallic nanowire-based vertical organic field-effect transistor, ACS Appl Mater Interfaces, 7 (2015) 2149-2152.
[34] M. Greenman, A.J. Ben-Sasson, Z. Chen, A. Facchetti, N. Tessler, Fast switching characteristics in vertical organic field effect transistors, Applied Physics Letters, 103 (2013) 073502.
[35] N.D. Denkov, D. Velev, P.A. Kralchevsky, I.B. Ivanov, H. Yoshimura, K. Nagayama, Mechanism of Formation of Two Dimensional Crystals from latex particles on substrates, Langmuir, 8 (1992) 3183-3319.
[36] J. Feder, Random sequential adsorption, Journal of Theoretical Biology, 87 (1980) 237-254.
[37] C.A. Johnson, A.M. Lenhoff, Adsorption of charged latex particles on mica studied by atomic force microscopy, JOURNAL OF COLLOID AND INTERFACE SCIENCE, 179 (1996) 587–599.
[38] M. Semmler, E.K. Mann, J. Ricˇka, M. Borkovec, Diffusional Deposition of Charged Latex Particles on Water Solid Interfaces at Low Ionic Strength, Langmuir, 14 (1998) 5127-5132.
[39] P. Hanarp, D.S. Sutherland, J. Gold, B. Kasemo, Control of nanoparticle film structure for colloidal lithography, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 214 (2003) 23-36.
[40] P.A. Kralchevsky, K. Nagayama, Capillary Forces between Colloidal Particles, Langmuir, 10 (1994) 23-36.
[41] Q. Yan, L. Gao, V. Sharma, Y.-M. Chiang, C.C. Wong, Langmuir,Particle and Substrate Charge Effects on Colloidal Self Assembly in a sessile drop, Langmuir, 24 (2008) 11518-11522.
[42] A.J. Ben-Sasson, N. Tessler, Patterned electrode vertical field effect transistor: Theory and experiment, Journal of Applied Physics, 110 (2011) 044501.
[43] W. Brütting, C. Adachi, Physics of Organic Semiconductors, 2nd, Completely New Revised Edition, (2012) p 174.
[44] Y. Preezant, N. Tessler, Self-consistent analysis of the contact phenomena in low-mobility semiconductors, Journal of Applied Physics, 93 (2003) 2059.
[45] A.J. Ben-Sasson, M. Greenman, Y. Roichman, N. Tessler, The Mechanism of Operation of Lateral and Vertical Organic Field Effect Transistors, Israel Journal of Chemistry, 54 (2014) 568-585.
[46] R.C. Haddon, A.S. Perel, R.C. Morris, T.T.M. Palstra, A.F. Hebard, R.M. Fleming, C60 thin film transistors, Applied Physics Letters, 67 (1995) 121.
[47] T.B. Singh, N.S. Sariciftci, H. Yang, L. Yang, B. Plochberger, H. Sitter, Correlation of crystalline and structural properties of C60 thin films grown at various temperature with charge carrier mobility, Applied Physics Letters, 90 (2007) 213512.
[48] M. Kitamura, Y. Kuzumoto, S. Aomori, M. Kamura, J.H. Na, Y. Arakawa, Threshold voltage control of bottom-contact n-channel organic thin-film transistors using modified drain/source electrodes, Applied Physics Letters, 94 (2009) 083310.
[49] X. Cheng, Y.-Y. Noh, J. Wang, M. Tello, J. Frisch, R.-P. Blum, A. Vollmer, J.P. Rabe, N. Koch, H. Sirringhaus, Controlling Electron and Hole Charge Injection in Ambipolar Organic Field-Effect Transistors by Self-Assembled Monolayers, Advanced Functional Materials, 19 (2009) 2407-2415.
[50] B.d. Boer, A. Hadipour, M.M. Mandoc, T.v. Woudenbergh, P.W.M. Blom, Tuning of Metal Work functions with Self-Assembled Monolayers. , Advanced Materials, 17 (2005) 621-625.
[51] Hui-Yu Chen, I-Wen Wu, Chin-Ti Chen, Shun-Wei Liu, C.-I. Wu., Self-assembled monolayer modification of silver source–drain electrodes for high-performance pentacene organic field-effect transistors, Organic Electronics, 13 (2012) 593–598.
[52] K.Y. Wu, S.Y. Yu, Y.T. Tao, Continuous modulation of electrode work function with mixed self-assembled monolayers and its effect in charge injection, Langmuir, 25 (2009) 6232-6238.
[53] O. Globerman, Lateral and vertical organic thin film tansistors, in, Technion-Israel Institute of technology, 2006.
[54] A.J. Ben-Sasson, G. Ankonina, M. Greenman, M.T. Grimes, N. Tessler, Low-Temperature Molecular Vapor Deposition of Ultrathin Metal Oxide Dielectric for Low-Voltage Vertical Organic Field Effect Transistors, ACS Applied Materials & Interfaces, 5 (2013) 2462-2468.
指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2015-9-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明