博碩士論文 102226039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.227.0.192
姓名 蘇柏宇(Poyu Su)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 葉綠素雙光子螢光超光譜影像於光合作用研究之應用
(Chlorophyll Two-photon Fluorescence Hyperspectral Imaging Applied to Photosynthesis Research)
相關論文
★ 非反掃描式平行接收之雙光子螢光超光譜顯微術★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數
★ LASER光源暨LED在老鼠毛生長的低能量光治療比較分析★ 應用線狀結構照明提升雙光子顯微鏡解析度
★ 以同調結構照明顯微術進行散射樣本解析度之提升★ 掃描式二倍頻結構照明顯微術
★ 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究★ 鏡像輔助斷層掃描相位顯微鏡
★ 以數位全像術重建多波長環狀光束之研究★ 相位共軛反射鏡用於散射介質中光學聚焦之研究
★ 雙光子螢光超光譜顯微術於多螢光生物樣本之研究★ 倍頻非螢光基態耗損超解析之顯微成像方法
★ 雙光子掃描結構照明顯微術★ 微投影光學切片超光譜顯微術
★ 使用結構照明顯微術觀察活體小鼠毛囊生長週期之變化★ 一次性多角度漫射光譜量測系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 葉綠素螢光已被認為可有效作為高等植物研究應用,作為非侵入性的方法評斷植物生理狀況,本研究使用線掃描式雙光子螢光超光譜顯微系統取得葉片樣本的葉綠素螢光超光譜影像,超光譜影像具有一維光譜與三維空間資訊,可取得最厚樣本深度為葉片樣本表面往下120 μm。
本研究配合主成分分析法及低溫螢光光譜量測,取得光合作用中光系統I及光系統II之基底螢光光譜,並引入吸收光譜修正螢光再吸收效應,利用最小平方法擬合葉片樣本中葉肉細胞三維空間各個位置的螢光光譜。
經由驗證量測光譜與擬合光譜之誤差,本研究使用之光譜擬合分析法可用於葉綠素螢光光譜分析。
摘要(英) Chlorophyll fluorescence is considered as a non-invasive method to monitor the physiological state of plants and is capable to apply for higher plants researches. A home-built line scanning two-photon fluorescence hyperspectral microscopy is used to record the chlorophyll fluorescence hyperspectral images containing 3D spatial and 1D spectral information in this research. The hyperspectral images within 120 μm beneath the leaf surface can be recorded.
In this research, the principle component analysis method and cryogenic fluorescence spectrum measurement are applied to analyze the spectrum bases of Photosystem I and Photosystem II. To correct the re-absorption effect in spectrum analysis, absorption spectrum of intact leaf is measured and used to build the fitting function. Using least squares method, the fluorescence spectra of mesophyll cells at various locations in three-dimensional are fitted and analyzed.
Through the errors between the measured and fitted fluorescence spectra, the fitting method used in this research is verified to be applicable for analysis of chlorophyll fluorescence.
關鍵字(中) ★ 雙光子螢光
★ 超光譜
★ 葉綠素螢光
關鍵字(英) ★ Two-photon fluorescence
★ Hyperspectral
★ Chlorophyll fluorescence
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 v
表目錄 vii
一、緒論 1
1-1葉綠素螢光與光合作用研究 1
1-2 研究動機與目的 7
二、實驗原理與分析法 9
2-1 光合作用與葉綠素螢光 9
2-2 雙光子螢光顯微術 11
2-3 螢光超光譜影像 13
2-4 線性分離法 16
2-5 主成分分析法 17
三、實驗方法 21
3-1 系統架構與校正 21
3-2 樣本備置與量測 26
3-3 葉片樣本吸收光譜量測 28
3-4 低溫葉片樣本螢光光譜量測 29
四、實驗結果與討論 31
4-1 葉綠素螢光超光譜影像 31
4-2 葉綠素螢光基底光譜與光譜擬合 35
4-3 葉綠素螢光光譜係數及誤差分析 40
4-4不同取像深度之光譜係數及誤差分析 48
五、結論 54
參考文獻 55
參考文獻 1. G. H. Krause and E. Weis, "Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals," Photosynth. Res. 5, 139-157 (1984).
2. G. H. Krause and E. Weis, "Chlorophyll fluorescence and photosynthesis: the basics," Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313-349 (1991).
3. N. R. Baker, "Chlorophyll fluorescence: a probe of photosynthesis in vivo," Annu. Rev. Plant Biol. 59, 89-113 (2008).
4. D. Brewster, "On the colours of natural bodies," Trans. R. Soc. Edinb. 12, 538-545 (1834).
5. Govindjee, "Sixty-three years since Kautsky: chlorophyll a fluorescence," Aust. J. Plant Physiol. 22, 131-160 (1995).
6. G. G. Stokes, "On the change of refrangibility of light," Phil. Trans. R. Soc. Lond. 142, 463-562 (1852).
7. H. Kautsky and A. Hirsch, "Neue versuche zur kohlensäureassimilation," Naturwissenschaften 19, 964-964 (1931).
8. H. K. Lichtenthaler, "Kautsky effect: 60 years of chlorophyll fluorescence induction kinetics," Photosynthetica 27, 45-55 (1992).
9. A. Stirbet and Govindjee, "On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient," J. Photochem. Photobiol. B: Biol. 104, 236-257 (2011).
10. U. Rinderle and H. K. Lichtenthaler, "The chlorophyll fluorescence ratio F690/F735 as a possible stress indicator," in Applications of Chlorophyll Fluorescene in Photosynthesis Research, Stress Physiology, Hydrobiology and Remote Sensing, H. K. Lichtenthaler, ed. (Springer Netherlands, Netherlands, 1988), pp. 189-196.
11. H. K. Lichtenthaler, R. Hak, and U. Rinderle, "The chlorophyll fluorescence ratio F690/F730 in leaves of different chlorophyll content," Photosynth. Res. 25, 295-298 (1990).
12. G. Agati, P. Mazzinghi, F. Fusi, and I. Ambrosini, "The F685/F730 chlorophyll fluorescence ratio as a tool in plant physiology: response to physiological and environmental factors," J. Plant Physiol. 145, 228-238 (1995).
13. G. Agati, P. Mazzinghi, M. Lipucci di Paola, F. Fusi, and G. Cecchi, "The F685/F730 chlorophyll fluorescence ratio as indicator of chilling stress in plants," J. Plant Physiol. 148, 384-390 (1996).
14. P. Eullaffroy and G. Vernet, "The F684/F735 chlorophyll fluorescence ratio: a potential tool for rapid detection and determination of herbicide phytotoxicity in algae," Water Res. 37, 1983-1990 (2003).
15. P. Mazzinghi, "A laser diode fluorometer for field measurements of the F685/F730 chlorophyll fluorescence ratio," Rev. Sci. Instrum. 67, 3737-3744 (1996).
16. C. Buschmann, "Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves," Photosynth. Res. 92, 261-271 (2007).
17. Govindjee, "Chlorophyll a fluorescence: a bit of basics and history," in Chlorophyll a Fluorescence, G. C. Papageorgiou and Govindjee, eds. (Springer Netherlands, Netherlands, 2004), pp. 1-41.
18. E. Pfündel, "Estimating the contribution of Photosystem I to total leaf chlorophyll fluorescence," Photosynth. Res. 56, 185-195 (1998).
19. M. Štroch, J. Podolinská, M. Navrátil, and V. Špunda, "Effects of different excitation and detection spectral regions on room temperature chlorophyll a fluorescence parameters," Photosynthetica 43, 411-416 (2005).
20. L. Palombi, G. Cecchi, D. Lognoli, V. Raimondi, G. Toci, and G. Agati, "A retrieval algorithm to evaluate the Photosystem I and Photosystem II spectral contributions to leaf chlorophyll fluorescence at physiological temperatures," Photosynth. Res. 108, 225-239 (2011).
21. J. E. Mullet, J. J. Burke, and C. J. Arntzen, "A developmental study of photosystem I peripheral chlorophyll proteins," Plant Physiol. 65, 823-827 (1980).
22. R. Croce, D. Dorra, A. R. Holzwarth, and R. C. Jennings, "Fluorescence decay and spectral evolution in intact photosystem I of higher plants," Biochemistry 39, 6341-6348 (2000).
23. G. Agati, "Response of the in vivo chlorophyll fluorescence spectrum to environmental factors and laser excitation wavelength," Pure Appl. Opt. 7, 797-807 (1998).
24. J. M. Anderson, "Photoregulation of the composition, function, and structure of thylakoid membranes," Annu. Rev. Plant Physiol. 37, 93-136 (1986).
25. A. Akoumianaki-Ioannidou, J. H. Georgakopoulos, C. Fasseas, and J. H. Argyroudi-Akoyunoglou, "Photoacclimation in Spathiphyllum," J. Photochem. Photobiol. B: Biol. 73, 149-158 (2004).
26. R. Pedrós, I. Moya, Y. Goulas, and S. Jacquemoud, "Chlorophyll fluorescence emission spectrum inside a leaf," Photochem. Photobiol. Sci. 7, 498-502 (2008).
27. F. Franck, P. Juneau, and R. Popovic, "Resolution of the Photosystem I and Photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature," Biochim. Biophys. Acta 1556, 239-246 (2002).
28. R. Peterson, V. Oja, and A. Laisk, "Chlorophyll fluorescence at 680 and 730 nm and leaf photosynthesis," Photosynth. Res. 70, 185-196 (2001).
29. J.-M. V. Briantais, C ., G. H. Krause, and E. Weis, "Chlorophyll a fluorescence of higher plants: chloroplasts and leaves," in Light emission by plants and bacteria, Govindjee, J. Amesz, and D. C. Fork, eds. (Academic, 1986), pp. 539-583.
30. A. A. Gitelson, C. Buschmann, and H. K. Lichtenthaler, "Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements," J. Plant Physiol. 152, 283-296 (1998).
31. G. B. Cordon and M. G. Lagorio, "Re-absorption of chlorophyll fluorescence in leaves revisited. A comparison of correction models," Photochem. Photobiol. Sci. 5, 735-740 (2006).
32. D. I. Arnon, "Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris," Plant Physiol. 24, 1-15 (1949).
33. J. D. Hiscox and G. F. Israelstam, "A method for the extraction of chlorophyll from leaf tissue without maceration," Botany 57, 1332-1334 (1979).
34. Y. Yamane, Y. Kashino, H. Koike, and K. Satoh, "Increases in the fluorescence Fo level and reversible inhibition of Photosystem II reaction center by high-temperature treatments in higher plants," Photosynth. Res. 52, 57-64 (1997).
35. J.-M. Briantais, C. Vernotte, G. H. Krause, and E. Weis, "Chlorophyll a fluorescence of higher plants: chloroplasts and leaves," in Light emission by plants and bacteria, Govindjee, J. Amesz, and D. C. Fork, eds. (Academic, 1986), pp. 539-583.
36. E. Rabinowitch and Govindjee, Photosynthesis (John Wiley and Sons, 1969), p. 273.
37. P. G. Falkowski and J. A. Raven, Aquatic Photosynthesis, 2nd ed. (Princeton University Press, 2007), p. 484.
38. J. B. Reece, M. R. Taylor, E. J. Simon, and J. L. Dickey, Campbell Biology: Concepts & Connections, 7th ed. (Pearson Education, 2012), p. 928.
39. W. L. Butler, "Energy distribution in the photochemical apparatus of photosynthesis," Annu. Rev. Plant Physiol. 29, 345-378 (1978).
40. A. N. Misra, M. Misra, and R. Singh, "Chlorophyll fluorescence in plant biology," in Biophysics, A. N. Misra, ed. (InTech, Croatia, 2012), pp. 171-192.
41. F. Helmchen and W. Denk, "Deep tissue two-photon microscopy," Nat. Methods 2, 932-940 (2005).
42. W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003).
43. W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
44. S. W. Paddock, "Confocal laser scanning microscopy," BioTechniques 27, 992-996, 998-1002, 1004 (1999).
45. W. B. Amos and J. G. White, "How the confocal laser scanning microscope entered biological research," Biol. Cell 95, 335-342 (2003).
46. S. M. Potter, "Vital imaging: Two photons are better than one," Curr. Biol. 6, 1595-1598 (1996).
47. Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, "Review of spectral imaging technology in biomedical engineering: achievements and challenges," J. Biomed. Opt. 18, 100901 (2013).
48. C.-I. Chang, Hyperspectral imaging (Springer US, 2003), p. 370.
49. A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, "Imaging spectrometry for earth remote sensing," Science 228, 1147-1153 (1985).
50. Y. Uno, S. O. Prasher, R. Lacroix, P. K. Goel, Y. Karimi, A. Viau, and R. M. Patel, "Artificial neural networks to predict corn yield from Compact Airborne Spectrographic Imager data," Comput. Electron. Agric. 47, 149-161 (2005).
51. S. T. Monteiro, Y. Minekawa, Y. Kosugi, T. Akazawa, and K. Oda, "Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery," ISPRS J. Photogramm. Remote Sens. 62, 2-12 (2007).
52. A. A. Gowen, M. Taghizadeh, and C. P. O’Donnell, "Identification of mushrooms subjected to freeze damage using hyperspectral imaging," J. Food Eng. 93, 7-12 (2009).
53. A. A. Gowen, C. P. O′Donnell, P. J. Cullen, G. Downey, and J. M. Frias, "Hyperspectral imaging - an emerging process analytical tool for food quality and safety control," Trends Food Sci. Technol. 18, 590-598 (2007).
54. T. Woodcock, C. C. Fagan, C. P. O′Donnell, and G. Downey, "Application of near and mid-infrared spectroscopy to determine cheese quality and authenticity," Food Bioproc. Tech. 1, 117-129 (2008).
55. Y.-Z. Feng and D.-W. Sun, "Application of hyperspectral imaging in food safety inspection and control: a review," Crit. Rev. Food Sci. Nutr. 52, 1039-1058 (2012).
56. R. C. Lyon, D. S. Lester, E. N. Lewis, E. Lee, L. X. Yu, E. H. Jefferson, and A. S. Hussain, "Near-infrared spectral imaging for quality assurance of pharmaceutical products: analysis of tablets to assess powder blend homogeneity," AAPS PharmSciTech 3, 1-15 (2002).
57. Y. Roggo, A. Edmond, P. Chalus, and M. Ulmschneider, "Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms," Anal. Chim. Acta 535, 79-87 (2005).
58. Y. Roggo, P. Chalus, L. Maurer, C. Lema-Martinez, A. Edmond, and N. Jent, "A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies," J. Pharm. Biomed. Anal. 44, 683-700 (2007).
59. D. G. Ferris, R. A. Lawhead, E. D. Dickman, N. Holtzapple, J. A. Miller, S. Grogan, S. Bambot, A. Agrawal, and M. L. Faupel, "Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia," J. Low. Genit. Tract. Dis. 5, 65-72 (2001).
60. J. Benavides, S. Chang, S. Park, R. Richards-Kortum, N. Mackinnon, C. MacAulay, A. Milbourne, A. Malpica, and M. Follen, "Multispectral digital colposcopy for in vivo detection of cervical cancer," Opt. Express 11, 1223-1236 (2003).
61. W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, "Snapshot hyperspectral imaging in ophthalmology," J. Biomed. Opt. 12, 014036-014036-014037 (2007).
62. R. Lansford, G. Bearman, and S. E. Fraser, "Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy," J. Biomed. Opt. 6, 311-318 (2001).
63. A. J. Radosevich, M. B. Bouchard, S. A. Burgess, B. R. Chen, and E. M. C. Hillman, "Hyperspectral in vivo two-photon microscopy of intrinsic contrast," Opt. Lett. 33, 2164-2166 (2008).
64. H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, "Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition," J. Histochem. Cytochem. 48, 653-662 (2000).
65. T. Zimmermann, "Spectral imaging and linear unmixing in light microscopy," in Microscopy Techniques, J. Rietdorf, ed. (Springer Berlin Heidelberg, Germany, 2005), pp. 245-265.
66. I. T. Jolliffe, Principal Component Analysis, 2nd ed., Springer Series in Statistics (Springer New York, 2002), p. 488.
67. S. Joe Qin, "Statistical process monitoring: basics and beyond," J. Chemom. 17, 480-502 (2003).
68. H. Cheng, M. Nikus, and S.-L. Jämsä-Jounela, "Evaluation of PCA methods with improved fault isolation capabilities on a paper machine simulator," Chemometr. Intell. Lab. Syst. 92, 186-199 (2008).
69. R. Sharmin, S. L. Shah, and U. Sundararaj, "A PCA based fault detection scheme for an industrial high pressure polyethylene reactor," Macromol. React. Eng. 2, 12-30 (2008).
70. V. Choqueuse, M. E. H. Benbouzid, Y. Amirat, and S. Turri, "Diagnosis of three-phase electrical machines using multidimensional demodulation techniques," IEEE Trans. Ind. Electron. 59, 2014-2023 (2012).
71. V. Chi-Man, W. Pak-Kin, and I. Weng-Fai, "A new framework of simultaneous-fault diagnosis using pairwise probabilistic multi-label classification for time-dependent patterns," IEEE Trans. Ind. Electron. 60, 3372-3385 (2013).
72. Y. Shen, S. X. Ding, X. Xiaochen, and L. Hao, "A review on basic data-driven approaches for industrial process monitoring," IEEE Trans. Ind. Electron. 61, 6418-6428 (2014).
73. M. Scholz, "Approaches to analyse and interpret biological profile data," Ph.D. thesis (University of Potsdam, Germany, 2006).
74. Y.-T. Chen, "The research of multi-fluorescence bio-specimens with two-photon fluorescence hyperspectral microscopy," M.S. thesis (National Central University, Taiwan, 2015).
75. A. Beer, "Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten," Ann. der Physik 162, 78-88 (1852).
76. S. Somersalo and G. H. Krause, "Photoinhibition at chilling temperature," Planta 177, 409-416 (1989).
77. S. Bellafiore, F. Barneche, G. Peltier, and J.-D. Rochaix, "State transitions and light adaptation require chloroplast thylakoid protein kinase STN7," Nature 433, 892-895 (2005).
78. G. C. Papageorgiou and Govindjee, "Photosystem II fluorescence: Slow changes – Scaling from the past," J. Photochem. Photobiol. B: Biol. 104, 258-270 (2011).
79. R. Croce, G. Zucchelli, F. M. Garlaschi, R. Bassi, and R. C. Jennings, "Excited state equilibration in the photosystem I-light-harvesting I complex: P700 is almost isoenergetic with its antenna," Biochemistry 35, 8572-8579 (1996).
80. H.-W. Trissl, "Determination of the quenching efficiency of the oxidized primary donor of Photosystem I, P700+: Implications for the trapping mechanism," Photosynth. Res. 54, 237-240 (1997).
81. N. Moise and I. Moya, "Correlation between lifetime heterogeneity and kinetics heterogeneity during chlorophyll fluorescence induction in leaves: 1. Mono-frequency phase and modulation analysis reveals a conformational change of a PSII pigment complex during the IP thermal phase," Biochim. Biophys. Acta 1657, 33-46 (2004).
82. E. Pfündel, "Deriving room temperature excitation spectra for photosystem I and photosystem II fluorescence in intact leaves from the dependence of FV/FM on excitation wavelength," Photosynth. Res. 100, 163-177 (2009).
指導教授 陳思妤(Szu-Yu Chen) 審核日期 2016-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明