博碩士論文 102226049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:18.223.172.199
姓名 呂揚翰(Yang-Han Lu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 有機強耦合共振腔元件設計與發光量測系統架設之研究
(Research of organic strong coupling resonator device design and luminescence measurement system)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
★ 強耦合有機微共振腔之設計與研究★ 光激發有機極化子元件之製作與量測
★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究★ 光激發有機極化子元件之模擬與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要探討有機強耦合共振腔元件之結構設計以及其發光特性之量測系統架設。在元件結構的設計部分,利用時域有限差分法( finite-difference-time-domain method, FDTD )和膜矩陣( matrix of thin film )等模擬工具設計出一intra-cavity pumping強耦合共振腔元件,其中結合有機高吸收染料分子薄膜作為產生強耦合能態的媒介以及紅光有機發光二極體( organic light emitting diode, OLED )作為產生強耦合能態發光之光汞源,並模擬其Polariton能態。在設計過程中,藉由調整有機染料分子薄膜堆疊層數,以及二氧化矽空間層的厚度,可使得電場分佈於高吸收染料分子薄膜層和紅光發光層具有相對強度極大值,讓共振腔元件獲得最佳化的強耦合效率以及發光效率。之後分析紅光有機發光二極體,其中發光層以TPB3和DCJTB作為主體與客體材料,探討DCJTB的摻雜濃度對放光頻譜的影響。在摻雜濃度為2%的OLED得到放光頻譜峰值為600 nm,吻合整體設計的強耦合共振腔元件的polariton能態下支(Low branch)最低能量,即可利用此紅光發光層直接激發polariton能態最低能量的發光,避免激子-激子淬熄效應造成激發效率的損耗。

為了進一步在實驗上觀察元件強耦合發光現象,必須要獲取光譜(包含光強)與角度的色散資訊。因此我們針對600 nm的發光中心波段進行一次性多角度光譜量測系統的設計。我們根據超光譜原理,設計出一套能即時取得光譜維度與角度維度訊息的量測系統。量測系統有效擷取角度範圍為-60o~60o,解析度為1o,波長範圍為455~645 nm,解析度為0.1 nm。此系統的優點為大幅縮短有機元件各角度光譜的量測時間,可在元件發光最佳化的條件下獲取準確的色散關係與相對光強資訊。

摘要(英) The study mainly refers to the design of organic red-light strongly-coupled cavity device and luminescence measurement system. In terms of design for strongly-coupled cavity device which is designed with simulation tool of finite-difference-time-domain method, (FDTD) and matrix of film. The device which is combined with high absorption of organic dye molecules (as a medium for produce a strong coupling energy states) and the red organic light emitting diode (OLED) (as pumping source for produce a strong coupling state). The device in electroluminescence state has relative maximum electric field intensity on high absorption dye molecular thin film and red light emitting layer by tuning the stack layers of organic high absorption dye molecular thin film and thickness of SiO2 spacer layers, thus, better strong-coupled efficiency and luminescence efficiency of the device could be achieved. On the other hand, To analyze the red-light OLED as light emitting layer is combined with TPB3 (host) and DCJTB (guest), to discuss a spectrum is affected by guest doping ratio in light emitting layer To dope concentration of 2% of OLED with an emission spectrum which peaks at 600nm, to match the device design for low branch lowest energy of polariton energy states, it can exciting polariton lower branch state, so can use this red light emitting layer directly to excite polariton lowest energy state to light, to avoid excitation efficiency loss the exciton - exciton quenching effects caused by the exciton - exciton quenching effects.

In order to observe polariton Low branch lowest energy was excited, we must capture the spectrum (include the intensity of light) and the angle dispersion information. Therefore, we design one-snap-shot multi-angle spectrum measurement system for luminesce (center wavelength at 600 nm), such that system catch the dispersion curve (comprising spectrum dimension and angular dimension information) of the element could be obtained from images being caught. An effective spectra range from 455~645 nm (resolution: 0.1 nm) and angular range from -60o~60o (resolution: 1 deg), according correction and sampling for snap image. The system could reduce acquisition time for spectrum information dependent on angular position and obtain accurate dispersion relation and intensity information in the Optimization conditions for light emitting device.

關鍵字(中) ★ 有機強耦合
★ 共振腔
★ 發光量測系統
關鍵字(英) ★ strong coupling
★ resonator
★ luminescence measurement
論文目次 摘要 I

Abstract III

致謝 V

目錄 VI

圖目錄 IX

表目錄 XIII

第一章 緒論 1

1-1 簡介 1

1-2 有機材料與強耦合機制的發展 3

1-2-1 在有機材料與無機材料中的激子 3

1-2-2 自聚集有機染料分子J-aggregate 4

1-2-3 PDAC/DEDOC J-aggregate 高吸收薄膜 6

1-2-4 有機材料強耦合機制 8

1-3 超光譜影像 11

1-4 研究動機 13

第二章 研究原理 14

2-1多層膜光譜模擬與設計理論 14

2-1-1 正向入射多層膜堆 14

2-1-2 斜向入射修正 16

2-1-3 非相干性之反射與透射 17

2-2 電場分佈 18

2-2-1 導納軌跡 18

2-2-2 電場分佈 20

2-3 有限時與差分法 21

2-4 微共振腔中光子與激子的強耦合關係 22

2-4-1 微共振腔中形成準粒子Polariton能態的機制 22

2-4-2 微共振腔中光場模態的色散關係 25

2-4-3 準粒子Polariton能態的能量分佈 27

2-4-4 等效質量 30

第三章 實驗儀器 32

3-1 共振腔元件製作與量測儀器 32

3-2 量測系統架設校準工具 33

第四章 紅光共振腔元件 34

4-1 紅光共振腔元件設計 35

4-1-1 紅光共振腔元件結構設計 35

4-1-2 紅光共振腔電場分布設計 36

4-1-3 紅光共振腔反射頻譜與色散曲線圖 37

4-2 紅光OLED元件設計與分析 39

4-2-1 元件設計 40

4-2-2 元件分析 41

4-2-3 結果與討論 43

4-3 章節小結 45

第五章 量測系統之設計與建立 46

5-1 量測系統之設計與建立 46

5-1-1 光譜維度設計 46

5-1-2 角度維度設計 49

5-2 系統校正 51

5-2-1 光譜維度校正 51

5-2-1-1 光譜波長校正 51

5-2-1-2 光譜強度校正 53

5-2-2 角度維度校正 57

5-2-2-1 角度空間分布校正 57

5-2-2-2 角度空間光強度校正 58

5-3 二維影像轉換 61

5-4 章節小結 62

第六章 結論與未來目標 63

參考文獻 66

參考文獻 1. Würthner, F., T.E. Kaiser, and C.R. Saha‐Möller, J‐Aggregates: From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Materials. Angewandte Chemie International Edition, 2011. 50(15): p. 3376-3410.

2. Connolly, L.G., et al., Strong coupling in high-finesse organic semiconductor microcavities. Applied Physics Letters, 2003. 83(26): p. 5377.

3. Tani, T., et al., Local reflection micro-spectroscopy of excitons in fibril-shaped molecular J-aggregates prepared in PVA thin films. Journal of Luminescence, 2003. 102-103: p. 27-33.

4. Kasprzak, J., et al., Bose–Einstein condensation of exciton polaritons. Nature, 2006. 443(7110): p. 409-414.

5. Savona, V., et al., Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes. Solid State Communications, 1995. 93(9): p. 733-739.

6. Wei, H.S., et al., Adjustable exciton-photon coupling with giant Rabi-splitting using layer-by-layer J-aggregate thin films in all-metal mirror microcavities. Optics Express, 2013. 21(18): p. 21365-21373.

7. Pradeesh, K., J. Baumberg, and G.V. Prakash, Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity. Optics express, 2009. 17(24): p. 22171-22178.

8. Schwartz, T., et al., Polariton dynamics under strong light-molecule coupling. Chemphyschem, 2013. 14(1): p. 125-31.

9. Slootsky, M., et al. Formation of hybrid polaritons in an organic-inorganic microcavity at room temperature. in CLEO: QELS_Fundamental Science. 2013. Optical Society of America.

10. Tischler, J., et al., Strong Coupling in a Microcavity LED. Physical Review Letters, 2005. 95(3).

11. Rossbach, G., et al., Impact of saturation on the polariton renormalization in III-nitride based planar microcavities. Physical Review B, 2013. 88(16).

12. Daskalakis, K.S., et al., All-dielectric GaN microcavity: Strong coupling and lasing at room temperature. Applied Physics Letters, 2013. 102(10): p. 101113.

13. Gibbs, H.M., G. Khitrova, and S.W. Koch, Exciton–polariton light–semiconductor coupling effects. Nature Photonics, 2011. 5(5): p. 273-273.

14. Chemla, D.S., Nonlinear optical properties of organic molecules and crystals. Vol. 1. 2012: Elsevier.

15. Pope, M. and C. Swenberg, Electronic processes in organic crystals and polymers, 1999. Cocchi, M. & Virgili, D. & Giro, G. & Fattori, V. & Marco, PD & Kalinowski, J. & Shirota, Y., Appl. Phys. Lett, 2002. 80: p. 2401.

16. Tani, T., et al., Microscopic exciton properties of fibril-shaped molecular J-aggregates prepared in ultra-thin polymer films. Journal of Luminescence, 2004. 107(1-4): p. 339-346.

17. Tani, T., et al., Anisotropic observation of absorption and fluorescence transition dipoles in exciton–polariton properties of PIC J-aggregates. Journal of Luminescence, 2007. 122-123: p. 244-246.

18. Oda, M., et al., Strong exciton-photon coupling and its polarization dependence in a metal-mirror microcavity with oriented PIC J-aggregates. physica status solidi (c), 2009. 6(1): p. 288-291.

19. Oda, M., et al., Fabrication, characterization and its local reflection properties of a metal-mirror microcavity with high concentrated PIC J-aggregates. Physics Procedia, 2010. 3(4): p. 1615-1620.

20. Bradley, M.S., J.R. Tischler, and V. Bulović, Layer‐by‐Layer J‐Aggregate Thin Films with a Peak Absorption Constant of 106 cm–1. Advanced Materials, 2005. 17(15): p. 1881-1886.

21. Coles, D.M., et al., Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities. Physical Review B, 2013. 88(12).

22. Wei, H.S., et al., Adjustable exciton-photon coupling with giant Rabi-splitting using layer-by-layer J-aggregate thin films in all-metal mirror microcavities. Opt Express, 2013. 21(18): p. 21365-73.

23. Christogiannis, N., et al., Characterizing the Electroluminescence Emission from a Strongly Coupled Organic Semiconductor Microcavity LED. Advanced Optical Materials, 2013. 1(7): p. 503-509.

24. Virgili, T., et al., Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity. Physical Review B, 2011. 83(24).

25. Somaschi, N., et al., Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities. Applied Physics Letters, 2011. 99(14): p. 143303.

26. Coles, D.M., et al., Vibrationally Assisted Polariton-Relaxation Processes in Strongly Coupled Organic-Semiconductor Microcavities. Advanced Functional Materials, 2011. 21(19): p. 3691-3696.

27. Coles, D.M., et al., Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity. Physical Review B, 2011. 84(20).

28. Chovan, J., et al., Controlling the interactions between polaritons and molecular vibrations in strongly coupled organic semiconductor microcavities. Physical Review B, 2008. 78(4).

29. Wenus, J., et al., Optical strong coupling in microcavities containing J-aggregates absorbing in near-infrared spectral range. Organic Electronics, 2007. 8(2-3): p. 120-126.

30. Ceccarelli, S., et al., Temperature dependent polariton emission from strongly coupled organic semiconductor microcavities. Superlattices and Microstructures, 2007. 41(5-6): p. 289-292.

31. Lidzey, D.G., et al., Hybrid polaritons in strongly coupled microcavities: experiments and models. Journal of Luminescence, 2004. 110(4): p. 347-353.

32. Krizhanovskii, D.N., et al., Photoluminescence emission and Raman scattering polarization in birefringent organic microcavities in the strong coupling regime. Journal of Applied Physics, 2003. 93(9): p. 5003.

33. Akselrod, G.M., et al., Lasing through a strongly-coupled mode by intra-cavity pumping. Opt Express, 2013. 21(10): p. 12122-8.

34. Bradley, M.S. and V. Bulović, Intracavity optical pumping of J-aggregate microcavity exciton polaritons. Physical Review B, 2010. 82(3).

35. Akselrod, G.M., et al., Exciton-exciton annihilation in organic polariton microcavities. Physical Review B, 2010. 82(11).

36. Keshava, N. and J.F. Mustard, Spectral unmixing. Signal Processing Magazine, IEEE, 2002. 19(1): p. 44-57.

37. Lu, G. and B. Fei, Medical hyperspectral imaging: a review. J Biomed Opt, 2014. 19(1): p. 10901.

38. Johnson, W.R., et al., Snapshot hyperspectral imaging in ophthalmology. J Biomed Opt, 2007. 12(1): p. 014036.

39. Roger A. Schultz, et al., Hyperspectral Imaging: A Novel Approach

For Microscopic Analysis. 2001. 43: p. 239-247.

40. Milind Rajadhyaksha, et al., In-Vivo Confocal Scanning Laser Microscopy of Human Skin: Melanin Provides Strong Contrast. 1995. 104(6): p. 946-952.

41. Bannon, D., Hyperspectral imaging: Cubes and slices. Nature Photonics, 2009. 3(11): p. 627-629.



42. Lepage, D., et al., Conic hyperspectral dispersion mapping applied to semiconductor plasmonics. Light: Science & Applications, 2012. 1(9): p. e28.

43. 李正中, 薄膜光學與鍍膜技術 (第七版). 2012, 新北市: 藝軒圖書出版社.

44. Teich, M.C. and B. Saleh, Fundamentals of photonics. Canada, Wiley Interscience. 1991.

45. Lodden, G.H. and R.J. Holmes, Polarization splitting in polariton electroluminescence from an organic semiconductor microcavity with metallic reflectors. Applied Physics Letters, 2011. 98(23): p. 233301.

46. Hayashi, S., Y. Ishigaki, and M. Fujii, Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities. Physical Review B, 2012. 86(4).

47. Griffiths, D.J. and R. College, Introduction to electrodynamics. Vol. 3. 1999: prentice Hall Upper Saddle River, NJ.

48. K.S.Yee, Numerical solution of initial boundary value problems involving maxwell′s equations in isotropic media. IEEE Transactions Antennas and Propagation, 1966. 14: p. 302-307.

49. Kéna-Cohen, S., S.A. Maier, and D.D.C. Bradley, Ultrastrongly Coupled Exciton-Polaritons in Metal-Clad Organic Semiconductor Microcavities. Advanced Optical Materials, 2013. 1(11): p. 827-833.

50. Chergui, M., et al., Ultra-fast polariton dynamics in an organic microcavity. EPJ Web of Conferences, 2013. 41: p. 04015.

51. Deng, H., H. Haug, and Y. Yamamoto, Exciton-polariton Bose-Einstein condensation. Reviews of Modern Physics, 2010. 82(2): p. 1489-1537.

52. Deng, H., H. Haug, and Y. Yamamoto, Exciton-polariton Bose-Einstein condensation. Reviews of modern physics, 2010. 82(2): p. 1489.

53. Deveaud-Plédran, B. and K.G. Lagoudakis, Vortices in Spontaneous Bose–Einstein Condensates of Exciton–Polaritons, in Exciton Polaritons in Microcavities. 2012, Springer. p. 67-84.

54. Tischler, J.R., et al., Solid state cavity QED: Strong coupling in organic thin films. Organic Electronics, 2007. 8(2-3): p. 94-113.

55. Hagelstein, P.L., S.D. Senturia, and T.P. Orlando, Introductory applied quantum and statistical mechanics. Introductory Applied Quantum and Statistical Mechanics, by Peter L. Hagelstein, Stephen D. Senturia, Terry P. Orlando, pp. 785. ISBN 0-471-20276-2. Wiley-VCH, March 2004. Vol. 1. 2004.

56. Kéna-Cohen, S. and S.R. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photonics, 2010. 4(6): p. 371-375.

57. Lodden, G.H. and R.J. Holmes, Thermally activated population of microcavity polariton states under optical and electrical excitation. Physical Review B, 2011. 83(7).

58. Mazza, L., et al., Microscopic theory of polariton lasing via vibronically assisted scattering. Physical Review B, 2013. 88(7).

59. Lodden, G.H. and R.J. Holmes, Electrical excitation of microcavity polaritons by radiative pumping from a weakly coupled organic semiconductor. Physical Review B, 2010. 82(12).

60. Coulson, C., et al., Electrically controlled strong coupling and polariton bistability in double quantum wells. Physical Review B, 2013. 87(4).

61. Townsend, J.S., A modern approach to quantum mechanics. 2000: University Science Books.

62. Panzarini, G., et al., Exciton-light coupling in single and coupled semiconductor microcavities: Polariton dispersion and polarization splitting. Physical Review B, 1999. 59(7): p. 5082.

63. Skolnick, M., T. Fisher, and D. Whittaker, Strong coupling phenomena in quantum microcavity structures. Semiconductor Science and Technology, 1998. 13(7): p. 645.

64. 吳峻志, 高效率紅光及高效率單層全波段白光有機電激發光元件之研究. 2008.

指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2015-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明