博碩士論文 102230001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.137.221.163
姓名 劉閔禎(Ming-Chen Liu)  查詢紙本館藏   畢業系所 生物物理研究所
論文名稱
(Effects of periodic and sustained stretching on cardiac culture)
相關論文
★ 利用雷射破壞方法研究神經網路的連結及同步發火的行為★ 神經膠細胞在神經同步活動及鈣離子波傳遞中之角色
★ 黏菌之運動模型研究★ 離子通道電流漲落的非線性行為
★ 亞精胺影響下DNA構形與DNA碎片分佈之研究★ DNA在微通道的熱泳行為
★ 溫度及鈣動力學對離體心臟心率之影響★ 非線性控制方法來抑制離體心臟中心跳強弱交替的現象與溫度和心臟收縮的力對心律變異性的影響
★ Thermo-diffusiophoresis and their Thermodynamics★ Predicting Self-terminating Ventricular Fibrillation by Bivariate Data Analysis and Controlling Cardiac Alternans by Chaotic Attractors
★ 在外加振盪磁場中阻尼磁針的非線性動力學分析★ 控制單一神經元的發放時間
★ 非線性調控對心臟分岔現象的影響★ 神經膠細胞對於神經網路同步爆發之影響
★ A Study of Synchronized Burst Mechanisms in Neuronal Cultures★ The Effects of Sustain Stretching and Compression in the Inter-beat Interval and Beat Rate Variability of Embryonic Cardiomyocytes
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 一般來說我們認為心臟跳動是藉由電訊號傳遞來控制的。但是研究發現除了電訊號之外,機械力也能夠誘導心肌細胞上的機械力敏感離子通道開啟並且產生電流進而影響心臟的電活動。本實驗主要是探討機械力對心臟細胞跳動週期的影響,另外我們也探討纖維母細胞的數量多寡是否影響跳動週期。

心臟細胞是由大鼠胚胎(懷孕17天)的心臟取得,並且培養在可變形的腔室中,我們以單軸方向拉腔室。本實驗使用了兩種形式來拉伸細胞:(1) 週期性拉伸:1 Hz下持續二到四個小時,並以鈣離子螢光染色來觀察細胞跳動,(2) 持續性拉伸:將腔室維持在拉的情況下五分鐘再放掉腔室,並在明視野顯微鏡下觀測。本實驗使用了拉伸激活離子通道阻斷劑:釓(Gd3+),這是一個應用在機械力敏感通道上常見的阻斷劑。

心臟細胞在週期性拉伸過後,我們發現細胞的跳動週期會接近拉伸的週期。
在持續性拉伸下,細胞的跳動週期變長。加入釓之後我們發現,拉伸對細胞跳動週期的影響小很多。除此之外,本實驗抑制了纖維母細胞的增長,發現在低密度纖維母細胞的情況下,跳動週期以及心律變異度明顯的高於高密度纖維母細胞的心臟細胞。
摘要(英) Traditionally, it is believed that cardiac dynamics is controlled only by electrical activities. However, it is known that mechanical forces can also activate mechanical sensitive channels in the cell which can bring changes in electrical activity. The purpose of our experiment is to understand whether mechanical forces affect the cardiac beating dynamics. We also want to understand whether the number of fibroblasts which is mechanical sensitive affect the beating dynamics. Cardiomyocytes were dissected from rat embryos and seeded on a deformable silicon chamber in which stretching can be realized by elongation. Two kinds of stretching were used: (1) Periodic stretching at 1 Hz for 2 to 4 hours and the dynamics are observed by calcium imaging, (2) Sustained stretching for 5 minutes and the dynamics are observed by bright field microscopy. The stretch-activated ion channels (SACs) blocker, Gadolinium (Gd3+), was used in our experiment to investigate its effect on the beating dynamics. Under periodic stretching, we found that the frequency of cardiomyocytes can almost be synchronized by the stretching frequency. As for sustained stretching, we found that the heart rate decreases during stretching. After treating with $Gd^{3+}$, the difference of inter-beat interval (IBI) between stretched and non-stretched samples significantly decreases. In addition, we also investigated the beating of cardiac culture in the presence of high and low density fibroblasts. As for low density of fibroblasts, the IBI and heart rate variability is higher than those in the high density one.
關鍵字(中) ★ 心臟
★ 心肌細胞
★ 拉伸
★ 周期拉伸
★ 持續拉伸
★ 拉伸激活通道
★ 機械力敏感通道
★ 纖維母細胞
關鍵字(英) ★ cardiac
★ cardiomyocyte
★ stretch
★ fibroblast
★ periodic stretching
★ sustained stretching
★ stretch-activated ion channel
★ SACs
★ Gadolinium
論文目次 摘要 i
Abstract iii
致謝 v
List of Figures xi
List of Tables xvii
Symbols xix
Chapter 1 Introduction 1
1.1 Objective 1
1.2 The function and structure of the heart 2
1.3 Conduction system 3
1.3.1 SA node 3
1.3.2 Conduction 4
1.3.3 The action potential of cardiomyocyte cell 6
1.3.4 Excitation-contraction(EC) coupling 8
1.3.5 The membrane potential of fibroblast 9
1.3.6 Gap junction 11
1.4 Calcium imaging 11
1.5 Heart rate variability 12
1.6 Previous work on effect of stretching 13
1.6.1 Inward current through stretch-activated channels 14
1.6.2 Morphology changes 15
1.6.3 Increase in Ca2+ spark rate 16
1.6.4 Gap junction conductance 17
1.7 Goal of this work 17
Chapter 2 Method and Experimental Setup 19
2.1 Overview 19
2.2 Sample preparation 20
2.3 Optical system 21
2.3.1 Fluorescent optics system 21
2.3.2 Phase contrast optics system 23
2.4 Stretching system 24
2.4.1 Setup 24
2.4.2 Periodic stretching 27
2.4.3 Sustained stretching 28
2.4.4 Our works 28
2.5 Image Analysis 29
2.5.1 Calcium imaging 29
2.5.2 Bright field image 30
Chapter 3 Results 33
3.1 Overview 33
3.2 Result of periodic stretching (E1) 34
3.2.1 Periodic stretching increase the beating 34
3.2.2 Increasing of reentrant propagation frequency after stretching 34
3.3 Result of sustained stretching 35
3.3.1 Stretching effects on IBI and HRV (E2) 37
3.3.2 Effect of Gadolinium (E3) 38
3.4 Effects on different densities of fibroblasts (E4,E5) 42
Chapter 4 Discussions 49
4.1 Effects of stretching on cardiac dynamics 49
4.1.1 The variation of IBI and HRV on cardiac culture 49
4.1.2 Synchronization between every cluster 50
4.1.3 Effects of different density of fibroblast 50
4.1.4 Effects of SACs blocker Gadolinium(Gd3+) 51
4.2 Mechanism of stretching on cardiac culture 51
4.2.1 Activities of ion channels 51
4.2.2 Activities of fibroblasts 52
4.3 Future work and improvement 53
4.3.1 Stretchable microelectrode array 53
4.3.2 Immunostaining 53
4.3.3 Compressing on cardiac culture 53
Appendix A 55
A.1 Culture medium preparation 55
A.2 Coating preparation 55
A.2.1 Fibronectin 55
A.2.2 Coating procedure 55
A.3 Dissection 55
A.3.1 Preparation 55
A.3.2 Tissue fragments preparation 56
A.3.3 Digestion 56
A.3.4 Cell suspension preparation 57
A.3.5 Pre-plating (removing the fibroblast) 57
A.3.6 Cell counting / sample plating 57
Appendix B 59
B.1 Tyrode solution (400 mL) 59
B.1.1 Stock solution 59
B.1.2 Working solution 60
B.2 Fluo-8 AM loading stock solution 60
B.3 Staining protocol for cardiac culture is seeded on chamber 60
Appendix C 61
References 63
參考文獻 [1]GARNY, ALAN, and PETER KOHL. Mechanical induction of arrhythmias during ventricular repolarization: modeling cellular mechanisms and their interaction in two dimensions. Annals of the New York Academy of Sciences 1015.1 (2004): 133-143.
[2] Iaizzo, P. A. Handbook of Cardiac Anatomy, Physiology, and Devices. (2005).
[3] Camelliti, Patrizia, Thomas K. Borg, and Peter Kohl. Structural and functional characterisation of cardiac Fibroblasts. Cardiovascular research 65.1 (2005): 40-51.
[4] http://www.bem.fi/book/06/06.htm
[5] Klabunde, Richard. Cardiovascular physiology concepts. Lippincott Williams & Wilkins, (2011).
[6] Fabiato, A. L. E. X. A. N. D. R. E. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. The Journal of General Physiology 85.2 (1985): 247-289.
[7] Ashrafian, Houman, William J. McKenna, and Hugh Watkins.Disease pathways and novel therapeutic targets in hypertrophic cardiomyopathy. Circulation research 109.1 (2011):86-96.
[8] Kamkin, Andre, et al.Electrical interaction of mechanosensitive fi-broblasts and myocytes in the heart. Basic research in cardiology 100.4 (2005): 337-345.
[9] Yue, Lixia, Jia Xie, and Stanley Nattel. Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovascular research 89.4 (2011): 744-753.
[10] https://en.wikipedia.org/wiki/Gap_junction
[11] Severs, Nicholas J., et al. Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovascular research 80.1 (2008): 9-19.
[12] http://aatbio.com/gen4prst.pl?Cid=21080
[13] Kaufman, Christopher Luke. Cardiovascular Autonomic Function in Overweight and Obese Children. ProQuest, 2006.
[14] Casolo, Giancarlo, et al. Decreased spontaneous heart rate variability in congestive heart failure. The American journal of cardiology 64.18 (1989): 1162-1167.
[15] Horner, S. M., et al. Contribution to Heart Rate Variability by Mechanoelectric Feedback Stretch of the Sinoatrial Node Reduces Heart Rate Variability. Circulation 94.7 (1996): 1762-1767.
[16] Guharay, F., and F. Sachs. Stretch-activated single ion channel currents in tissuecultured embryonic chick skeletal muscle. The Journal of physiology 352.1 (1984): 685-701.
[17] Zeng, Tao, Glenna CL Bett, and Frederick Sachs. Stretch-activated whole cell currents in adult rat cardiac myocytes. American Journal of Physiology-Heart and Circulatory Physiology 278.2 (2000): H548-H557.
[18] Kim, Donghee. A mechanosensitive K+ channel in heart cells. Activation by arachidonic acid. The Journal of General Physiology 100.6 (1992): 1021-1040.
[19] Dhein, Stefan, et al. Mechanical control of cell biology. Effects of cyclic mechanical stretch on cardiomyocyte cellular organization. Progress in biophysics and molecular biology 115.2 (2014): 93-102.
[20] Kurazumi, Hiroshi, et al. The effects of mechanical stress on the growth, differentiation, and paracrine factor production of cardiac stem cells. (2011): e28890.
[21] Iribe, Gentaro, et al. Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate. Circulation research 104.6 (2009): 787-795.
[22] Gannier, François, et al. A possible mechanism for large stretchinduced increase in [Ca2+] i in isolated guinea-pig ventricular myocytes. Cardiovascular research 32.1 (1996): 158-167.
[23] Kamkin, Andre, Irina Kiseleva, and Ilya Lozinsky.The role of mechanosensitive fibroblasts in the heart: evidence from acutely isolated single cells, cultured cells and from intracellular microelectrode recordings on multicellular preparations from healthy and diseased cardiac tissue. Mechanosensitivity of the Heart. Springer Netherlands, 2010. 239-266.
[24] Yun-chieh Mi (2012). Suppression of alternan response in an isolated heart by a nonlinear control method and the mechanical and temperature effect on cardiac interbeat interval, master′s thesis, Graduate institute of biophysics National Central University, JungLi.
[25] Olympus America Inc.
http://www.olympusmicro.com/brochures/pdfs/mirrorunits.pdf
[26] Díaz, Mary E., Stephen C. O′Neill, and David A. Eisner. Sarcoplasmic reticulum calcium content fluctuation is the key to cardiac alternans. Circulation research 94.5 (2004): 650-656.
[27] Hwang, Seong-min, Tae Yun Kim, and Kyoung J. Lee. Complexperiodic spiral waves in con uent cardiac cell cultures induced by localized inhomogeneities. Proceedings of the National Academy of Sciences of the United States of America 102.29 (2005): 10363-10368.
[28] Schmitt, Nicole, Morten Grunnet, and Søren-Peter Olesen. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiological reviews 94.2 (2014): 609-653.
[29] Hamill, Owen P., and D. W. McBride. The pharmacology of mechanogated membrane ion channels. Pharmacological Reviews 48.2 (1996): 231-252.
[30] Fahrenbach, John P., Rafael MejiaAlvarez, and Kathrin Banach. The relevance of nonexcitable cells for cardiac pacemaker function. The Journal of physiology 585.2 (2007): 565-578.
[31] Wei, P., et al. Stretchable microelectrode array using roomtemperature liquid alloy interconnects. Journal of Micromechanics and Microengineering 21.5 (2011): 054015.
[32] Kaneko, Tomoyuki, Fumimasa Nomura, and Kenji Yasuda. On-chip constructive cell-Network study (I): Contribution of cardiac fibroblasts to cardiomyocyte beating synchronization and community effect. J Nanobiotechnol 9 (2011): 21.
指導教授 陳志強(Chi-Keung Chan) 審核日期 2016-1-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明