博碩士論文 102232007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.144.189.177
姓名 鐘翌菁(Yi-Ching Chung)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 具螢光粉冷卻之液冷式高功率 LED
(High Power LED with Liquid Cooling System on Phosphor)
相關論文
★ 多功能性碳奈米載體於增進神經元突觸增長之研究★ 奈米電漿子感測技術於生物分子之功能分析
★ 表面結構擴散片之設計、製作與應用★ 新型光電生化感測器之分析與研究
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ 薄膜電晶體液晶顯示器中視角色偏之優化補償方法
★ 特定色度背光模組零組件之光學特性評估★ 電子紙增亮分析與模擬設計
★ CCD 量測儀器之研究與探討★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用
★ 多光束繞射光學元件應用在DVD光學讀取頭之設計★ 高位移敏感度之全像多工光學儲存之研究
★ 利用亂相編碼與體積全像之全光學式光纖感測系統★ 體積光柵應用於微物3D掃描之研究
★ 具有偏極及光強分佈之孔徑的繞射極限的研究★ 三維亂相編碼之體積全像及其應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文將多顆藍光晶粒與 YAG 螢光粉封裝成一集成式白光 LED,以此光源當實驗樣品,減少光源光展量,同時分析在相同驅動條件下針對有無螢光粉散熱之差異,並評估其散熱效果與光色特性。不同於以往單純只針對 LED 基板進行散熱,本研究在 LED 的測試中利用水冷系統做為散熱裝置,同時對 LED 基板與螢光粉進行散熱,實驗各種不同形式的散熱架構,量測其光度、色度、熱度等資訊。對於頻譜的分析,與針對螢光粉散熱前相比,液冷內嵌式實驗架構能有效控制 LED 頻譜的位移與形變,以降低長時間點亮之色彩不穩定。溫度方面,亦能有效減緩 LED 溫度的上升,將 16 W COB 光源基板溫度控制於 40 度以下,發揮其散熱功效。另外光強度與光視效能的分析,亦能比針對螢光粉散熱前提升至少 10% 以上的實質效果,證實針對螢光粉進行散熱之重要性。
摘要(英) In this study, a cluster white LED with YAG phosphor and blue die array is analyzed. Under the same injection power, the cooling for phosphor resin or not is compared with considerations of heat dissipation and optical characteristics. The breakthrough is that a water cooling system is utilized to make a heat dissipation of the substrate and the phosphor resin rather than a heat sink to attach to the substrate of the LED. In the experiments, several set ups for heat dissipation are tested and analyzed with optical, chromatic, and thermal measurements. With the spectral analysis, the water cooling system for cooling the substrate and phosphor resin can decrease the spectral distortion and shift. Accordingly, the chromatic stability can be improved with the cooling system and method. For the 16 W COB light source, the temperature rising rate of the LED is reduced, and the Tb can be controlled under 40°C which means the heat dissipation is efficient enough. Furthermore, the light intensity and luminous efficacy of the light source can be enhanced at least 10% with phosphor cooling which echoes the importance of heat dissipation of phosphor resin.
關鍵字(中) ★ 水冷
★ 螢光粉
★ LED
關鍵字(英) ★ Water-Cooling
★ Phosphor
★ LED
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 v
圖索引 viii
表索引 xii
第一章 緒論 1
1-1 照明發展歷程 1
1-2 LED 發展介紹 2
1-3 LED 於舞台燈、投射燈之應用與市場分析 5
1-4 研究動機與目的 6
1-5 論文大綱 8
第二章 基本理論 9
2-1 白光 LED 受熱之影響 9
2-1-1 藍光 LED 受熱之影響 9
2-1-2 螢光粉受熱之影響 10
2-2 LED 光源特性分析與探討 12
2-2-1 LED 光展量 13
2-2-2 LED 光通量密度 14
2-3 幾何光學 16
2-3-1 反射定律與折射定律 16
2-3-2 Fresnel 方程式 18
2-4 輻射光度學 19
第三章 液冷式 LED 之實驗架構及流程 21
3-1 高功率集成式 LED 光源封裝流程 21
3-2 液冷系統運作流程 23
3-3 液冷式 LED 之實驗架構 26
3-4 腔體設計概念 33
第四章 液冷式 LED 之實驗量測結果 35
4-1 9 瓦 COB 光源之實驗與分析 35
4-1-1 藍寶石載板腔體之實驗 35
4-1-2 玻璃腔體之實驗 40
4-2 16 瓦 COB 光源之實驗與分析 44
4-3 實驗驗證 48
4-4 與市售光源之比較與分析 52
4-5 二次光學元件之設計 55
第五章 結論 59
參考文獻 61
附錄 67
7-1 3D 印表機列印行前轉檔流程 67
中英名詞對照表 71
參考文獻 [1]林川發,科學發展,435,36-41,2009.
[2]工業技術研究院 ITRI, LED 照明產業應用趨勢分析,http://www.taiwan
greenenergy.org.tw/files/Paper/2007 12905528.pdf.
[3]經濟部能源局,http://web3.moeaboe.gov.tw/ECW/business/news/News. aspx?kind=1&menu_id=41&news_id=3468.
[4]H. J. Round, “A note on carborundum,” Electr. World 49, 309 (1907).
[5]N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga (As1− xPx) junctions,” Appl. Phys. Lett, 82-83 (1962).
[6]S. Nakamura, T. Mukai, and M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,” Appl. Phys. 64, 1687-1689 (1994).
[7]S. Nakamura, M. Senoh, and T. Mukai, “High‐power InGaN/GaN double‐heterostructure violet light emitting diodes,” Appl. Phys. 62, 2390-2392 (1993).
[8]S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes,” Appl. Phys. 69, 4056-4058 (1996).
[9]S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story 2nd (Springer, Berlin Heidelberg, 2000).
[10]S. Nakamura, M. Senoh, N. Iwasa, and S.-I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Appl. Phys. 34, 797-799 (1995).
[11]S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN pn junction blue-light-emitting diodes,” Appl. Phys. 30, 1998-2001 (1991).
[12]Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi,“Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” U.S. Patent, US5998925 (1999).
[13]J. K. Kim and E.F. Schubert, “Transcending the replacement paradigm of solid-state lighting,” Opt. Express 16, 21835-21842 (2008).
[14]Cree, Inc., First to Break 300 Lumens-Per-Watt Barrier, http://www.cree.com/News-and-Events/Cree-News/Press-Releases/2014/March/300LPW-LED-barrier.
[15]孫慶成,光電科技概論,初版,全華圖書出版股份有限公司,台北市,中華民國九十七年。
[16]S. Muthu, F. J. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8, 333-339 (2002).
[17]S. Muthu, “Controlling method and system for RGB based LED luminary,” U.S. Patent, US6507159 (2003).
[18]A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of mulitichip white solid state lighting source with four or more LEDs,” Proc. SPIE 4445, 148-155 (2001).
[19]T. F. McNulty, B. Lake, D. D. Doxsee, S. Hills, and J. W. Rose, “UV reflectors and UV-based light sources having reduced UV radiation leakage incorporating the same,” U.S. Patent, US6686676 B2 (2004).
[20]A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor blends for generating white light from near-UV/blue light-emitting devices,” U.S. Patent, US6685852 (2004).
[21]Y. Shimizu, K. Sakano, Y. Noguchi and T. Moriguchi,“Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,”U.S. Patent, US5998925 (1999).
[22]Y. H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, and H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property,” Opt. Lett. 34, 1-3 (2009).
[23]LEDinside, LED舞檯燈中國市場的新起點, http:// www.ledinside.com.tw
/news/2012 0413-20528.html (2012).
[24]N. Narendran and Y. M. Gu, “Life of LED-based white light sources,” IEEE J. Display Technology 1, 167-171 (2005).
[25]T. Cheng, X. Luo, S. Huanga and S. Liub, “Thermal analysis and optimization of multiple LED packaging based on a general analytical solution,” Int. J. Thermal Science 49, 196-201 (2010).
[26]G. P. Peterson and Y. Wang, “Investigation of a novel flat heat pipe,” J. Heat Transfer. 127,165-170 (2005).
[27]T. Y. Chung, S. C. Chiou, C. Yu, C. C. Sun, T. H. Yang , and S. Y. Chen, “Study of temperature distribution within pc-WLEDs Using the remote-dome phosphor package,” IEEE Photonics 7, 1-11 (2015).
[28]H. C. Hsu, S. J. Wu, J. W. Su, J. S. Huang, and S. L. Fu, “Thermal design for high power arrayed LED heat-dissipating system,” IEEE, 222-225 (2013).
[29]M.-T. Sheen and M.-D. Jean, “Design and simulation of micro-tube device in thermal performance for high power LED cooling system,” IEEE Electronics, 3186-3190 (2012).
[30]J. S. Park and C. S. Huh, “A study on improved efficiency and cooling LED lighting using a seebeck effect,” IEEE Power Eng. Soc. 1-3 (2012)
[31]吳信美,白光發光二極體色彩表現穩定技術之研究,國立中央大學光電科學研究所碩士論文,中華民國一百年。
[32]鄭翰翔,白光LED加速老化之光輻射特性之研究,國立中央大學光電科學研究所碩士論文,中華民國一百零三年。
[33]郭浩中、賴芳儀、郭守義,LED 原理與應用,五南圖書出版股份有限公司,台北市,中華民國一百年。
[34]E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, Cambridge, 2003).
[35]D. A. Neamen and B. Pevzner, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill, New York, 2003).。
[36]B. E. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Series in Pure an Applied Optics, 2007).
[37]Mehmet, C. Becker, S. Weaver, and J. Petroski, “Thermal management of LEDs: package to system,” Proc. SPIE 5187, 64 (2004).
[38]M. Arik, S. Weaver, C. Becker, M. Hsing, and A. Srivastava, “Effects of localized heat generations due to the color conversion in phosphor particles and layers of high brightness light emitting diodes,” ASME/IEEE 3, 6-11 (2003).
[39]何信穎,白光LED之YAG螢光粉光學模型之研究,國立中央大學光電科學研究所碩士論文,中華民國九十七年。
[40]黃瑞琳,多激發光波長與溫度效應之螢光粉光學模型之研究,國立中央大學光電科學研究所碩士論文,中華民國一百零三年。
[41]J. Jiao and B. Wang, “Etendue concern for automotive headlamp using LEDs,” Proc. of SPIE 5187, 234-242(2004).
[42]B. Wang, T. Iwaki and J. Jiao, “Studies for headlamp optical design using LEDs,” SAE Technical (2004).
[43]C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang,” Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Express 31, 2193-2195 (2006).
[44]R. W. Boyd, Radiometry and the Detection of Optical Radiation (John Wiley and Sons, New York , 1984).
[45]鄭佳申,白光LED 之一階與二階光學設計,國立中央大學光電所碩士論文,中華民國九十七年。
[46]蔡直佑,高光效多功能 LED 投射光形之研究,國立中央大學光電所博士論文,中華民國一零四年。
[47]E. Hecht, Optics (Addison Wesley, San Francisco, 2002).
[48]V. N. Mahajan, Optical Imaging and Aberrations: Part I Ray Geometrical Optics (SPIE Press, Washington, 1998).
[49]孫慶成,光電工程概論,全華圖書股份有限公司,新北市,中華民國一百零一年。
[50]程勉儒,高功率白光 LED 適應性車燈之光學設計,國立中央大學光電所碩士論文,中華民國一百零三年。
[51]吳健君,LED 投射聚光型燈具與封裝晶粒大小之關係,國立中央大學光電所碩士論文,中華民國一百零二年。
[52]璦司柏,http://www.icprotect.com.tw/articles-13.html.
[53]Thermaltake, http://tw.thermaltake.com/home.aspx
[54]甄何平、蔣金波,用於大功率 LED 光源的菲涅爾透鏡,CN102901045 A (2013).
[55]A. Lo and J. Arenberg, “New architecture for space telescopes uses Fresnel lenses,” SPIE Opt. Eng. (2006).
[56]Netfabb, http://www.netfabb.com/company.php.
指導教授 楊宗勳、孫慶成(Tsung-Hsun Yang Ching-Cherng Sun) 審核日期 2015-10-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明