博碩士論文 102232013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:35.170.81.210
姓名 陳威旗(Wei-chi Chen)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 矽基鍺薄膜光偵測器之研究
(Development of Silicon-based Epitaxial Germanium Films and Photodetectors.)
相關論文
★ 類磊晶薄膜成長與調控並利用於太陽能電池之研究★ 低溫製備矽基鍺磊晶薄膜及矽基鍺緩衝層砷化鎵薄膜之研究
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
★ 整合慣性感測元件之導波矽基光學平台研究★ 矽基光偵測器研製與整合於光學波導系統
★ 光學滑鼠用之光學元件設計★ 高效率口袋型LED 投影機之研究
★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究為低溫製備矽基鍺薄膜光偵測器之研究。鍺材料與矽材料相比有較高的載子遷移率,因此鍺材料廣泛應用於高速光電元件,由於能隙為0.66 eV,吸收光之截止波長可達1550 nm,因此適合作為近紅外光偵測器。而矽基鍺薄膜元件,比起鍺晶圓作為基板之元件,有著低成本與易於單石積體化等優點。但是矽與鍺之間存在著4%的晶格不匹配,導致差排缺陷的產生,進而使薄膜品質受影響。國際上許多的團隊皆以高溫(650℃以上)製程或高溫熱退火等方式來解決此問題,高溫雖然可以降低差排缺陷,但是會衍生出矽鍺光偵測器整合在CMOS的溫度限制問題。本研究之光偵測器全程以低溫製程(375℃以下)所製備,此製程之優點可以將矽鍺光偵測器易於整合在CMOS元件上,形成良好的主動元件。
本實驗室與”國家奈米元件實驗室”合作利用減壓化學氣象沉積法(RPCVD)在N-type矽基板上低溫製備高品質鍺薄膜,鍺薄膜厚度為500nm與2µm,並利用X光繞射、原子力顯微鏡、蝕刻孔洞密度缺陷法和穿透式電子顯微鏡等進行分析。其中,X光繞射(XRD)量測半高寬為183arsec與119arsec;AFM儀器量測到表面RMS皆約為1nm;蝕刻孔洞密度缺陷法所計算差排缺陷密度(TDD)皆為 〖10〗^7 〖cm〗^(-2),並將高品質矽基鍺薄膜做成光偵測器。本研究矽基鍺光偵測器主要為p-i-n結構,P-type摻雜層製作方法可分為(1) ECR-CVD與(2) 離子佈植,(1)矽基鍺光偵測器主要利用ECR-CVD成長摻雜層在500nm (i-Ge)由RPCVD所沉積的矽基鍺薄膜上,操作偏壓為-1V,可達到低暗電流密度4.34 mA/cm^2(面積大小為530µm×530µm),並以850nm雷射與1310雷射作為光源,分別獲得0.32A/W與0.24 A/W的響應率(Responsibilty)。(2)在2µm(i-Ge)由RPCVD所沉積的矽基鍺薄膜上,利用離子佈植摻雜硼形成摻雜層,並制備成矽基鍺光偵測器,同樣以850nm雷射與1310雷射作為光源,分別獲得0.05A/W與0.1 A/W的響應率(Responsibilty);並且有較低的暗電流密度為1.86mA/cm2。離子佈殖摻雜層有很高的載子遷移率與良好的電性,但是我們從二次離子質譜儀(SIMS)圖觀察到表面摻雜濃度不夠,進而無法使半導體與金屬之間形成穿隧接面,且摻雜過深達到200nm,使得此方法製備的光偵測器,其響應率較ECR-CVD法來得低。
摘要(英) In this research, topic is Development of silicon-based epitaxial germanium films and photodetectors at a low temperature. Germanium whose bandgap is 0.66eV can absorb near-infrared light of wavelength. Germanium of Mobility is fast than silicon so germanium Integrated in silicon-based generally applies of high frequency device. Due to cutoff wavelength of Ge is at 1550 nm, so germanium can be used as a near-infrared photodetector. Ge films on Si is overcoming the large lattice mismatch (4.2% at 300 K), which cause a high threading dislocation density (TDD) in the Ge layers. Many Group in international use high temperature and annealing in fabrication to solve this problem. High temperature of fabrication will restrict to integrate in CMOS. In this research, all of the manufacture is low temperature(<375℃), advantage of which affect photodetector be integrated in COMS in the future.
We cooperated with NDL to operate Reduce Pressure chemical Vapor Deposition (RPCVD).The silicon-based epitaxial germanium Films were manufactured by RPCVD cooperated with NDL. The germanium films are part of 500nm and 2µm which are measured 183arsec and 119arsec by XPD. RMS of germanium films is 1nm by AFM and threading dislocation density is 〖10〗^7 〖cm〗^(-2)by EPD to be a high quality films. The photodetector is p-i-n structure whose way of p-doping are part of 1.ECR-CVD and 2. ion implantation. 1.The photodetector whose germanium films is 500nm by RPCVD are measured dark current density be 4.34 mA/cm^2(area is 530µm×530µm ) at -1V, responsivity is 0.32 A/W in 1310nm of laser and 0.24 A/W in 850nm of laser.
2.The photodetector whose germanium films is 2µm by RPCVD are measured dark current density be 1.86mA/cm^2(area is 530µm×530µm ) at -1V, responsivity is 0.1 A/W in 1310nm of laser and 0.05 A/W in 850nm of laser. Ion implantation of p-doped films possess high mobility and electric conductivity but we know concentration are not enough by SIMS.
In this experiment, all of photodetectors have low dark current density. This priority affect device have good signal-noise ratio. Dark current density is often a symptom of poor reliability.
關鍵字(中) ★ 矽基鍺薄膜
★ 矽基鍺光偵測器
關鍵字(英)
論文目次 目錄
摘要 i
Abstract ii
致謝 iii
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
第二章 基本原理及文獻回顧 3
2-1 磊晶薄膜成長方法 4
2-2 磊晶薄膜成長技術 5
2-3 P-i-N結構矽鍺光偵測器工作原理 9
2-4 P-i-N結構矽鍺光偵測器 11
2-4-1 離子佈植(Ion implantation) 11
第三章 實驗設備及分析儀器 14
3-1 實驗步驟 14
3-2製程設備 17
3-2-1 RPCVD 17
3-2-2 ECR-CVD 18
3-2-3快速退火爐(Arts-RTA) 19
3-2-4離子濺鍍機(DC Sputter) 20
3-2-5電子槍蒸鍍系統 (E-gun) 21
3-2-6反應離子蝕刻機(Reactive-Ion Etching, RIE) 21
3-2-7光罩對準曝光機 22
3-2-8 感應式耦合電漿化學氣象沉積(BMR-CVD) 22
3-3分析儀器 23
3-3-1 高解析度X光繞射儀(High Resolution X-Ray Diffractometer, HRXRD) 23
3-3-2橢圓偏振儀(Spectroscopic Ellipsometry) 24
3-3-3蝕刻孔洞密度缺陷(Etching pits density, EPD) 24
3-3-4穿透式電子顯微鏡(Transmission Electron Microscopy;TEM) 25
3-3-5中電流離子佈植機(The Varian Ion Implant Systems) 25
3-3-6原子力顯微鏡(Atomic force microscope, AFM) 26
3-3-7霍爾電性量測(Hall measurement) 26
3-3-8 Keithley2400 27
第四章 薄膜及光偵測器元件製備之結果討論 28
4-1 矽基鍺薄膜量測方式 28
4-2 矽基摻雜鍺薄膜製備與量測方式 34
4-2-1 鍺摻雜層 34
4-2-2 離子佈植摻雜層 38
4-3 矽鍺光偵測器製備與量測方式 40
4-3-1 摻雜層種類之影響 41
4-3-2 鍺薄膜厚度之影響 45
4-3-3 抗反射層之影響 47
第五章 結論與未來展望 50
5-1 結論 50
5-2 未來展望 51
參考文獻 55

參考文獻 [1] Lorenzo Colace, et al., "Low Dark-Current Germanium-on-Silicon Near-Infrared Detectors," IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 19, NO. 22, NOVEMBER 15, 2007.
[2] Yuji Yamamoto, et al., "Low threading dislocation density Ge deposited on Si (1 0 0) using RPCVD," Solid-State Electronics 60 (2011) 2–6.
[3] JM. Fedeli, et al., "Incorporation of a photonic layer at the metallization levels of a CMOS circuit," 1-4244-0096-1/06©2006 IEEE.
[4] Yasuhiko Ishikawa, et al., "Germanium for silicon photonics," Thin Solid Films 518 (2010) S83–S87.
[5] Giancarlo Barbarino, et al., "Silicon Photo Multipliers Detectors Operating in Geiger Regime: an Unlimited Device for Future Applications," Photodiodes - World Activities in 2011.
[6] Donghun Choi, et al., "Low surface roughness and threading dislocation density Ge growth on Si (0 01) ," Journal of Crystal Growth 310 (2008) 4273–4279.
[7] Mike Morse, et al., "Performance of Ge-on-Si p-i-n Photodetectors for Standard Receiver Modules," IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 18, NO. 23, DECEMBER 1, 2006.
[8] Dongwoo Suh, et al., "Ge-on-Si Photodetectors with 33 GHz Bandwidth Implemented by RPCVD," ECOC 2008, 21-25 September 2008, Brussels, Belgium.
[9] Laurent Vivien, et al., "42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide," 13 April 2009 / Vol. 17, No. 8 / OPTICS EXPRESS 6252.
[10] Jiho Joo, et al., " Progress in high-responsivity vertical-illumination type Ge-on-Si photodetecor operating at λ ~1.55 μm," OSA/OFC/NFOEC 2011.
[11] Laurent Vivien, et al., "Zero-bias 40Gbit/s germanium waveguide photodetector on silicon," 16 January 2012 / Vol. 20, No. 2 / OPTICS EXPRESS 1096.
[12] Hsin-Chiao Luan, et al., "High-quality Ge epilayers on Si with low threading-dislocation densities," APPLIED PHYSICS LETTERS/VOLUME 75, NUMBER 19/8 NOVEMBER 1999.
[13] Suresh Uppal, et al., "Diffusion of ion-implanted boron in germanium," JOURNAL OF APPLIED PHYSICS VOLUME 90, NUMBER 8 15 OCTOBER 2001.
[14] Zhiwen Zhou, et al., "The influence of low-temperature Ge seed layer on growth of high-quality Ge epilayer on Si(1 0 0) by ultrahigh vacuum chemical vapor deposition," Journal of Crystal Growth 310 (2008) 2508–2513.
[15] Jungwoo Oh, et al., "Planar Ge Photodetectors on Si Substrates for Si/Ge-based Optical Receivers," The University of Texas at Austin December, 2004.
[16] Vito Sorianello, et al., " Low-temperature germanium thin films on silicon," 1 September 2011 / Vol. 1, No. 5 / OPTICAL MATERIALS EXPRESS 856.
[17] R. Ichikawa, et al., " Germanium as a Material to Enable Silicon Photonics, " Topics in Applied Physics 119, 131–141 (2011).
[18] Dongwoo Suh, et al., "36-GHz High-Responsivity Ge Photodetectors Grown by RPCVD, " IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 21, NO. 10, MAY 15, 2009
[19] Suresh Uppal, et al., "Ion-implantation and diffusion behaviourof boron in germanium, "Physica B 308–310 (2001) 525–528.
[20] E. Simoen, et al., "Ion-implantation issues in the formation of shallow junctions in germanium, "Materials Science in Semiconductor Processing 9 (2006) 634–639.
[21] Dongliang Zhang, et al., "High-responsivity GeSn short-wave infrared p-i-n photodetectors, "APPLIED PHYSICS LETTERS 102, 141111 (2013).
[22] SHOU-YI CHANG, et al., "Improved Diffusion-Resistant Ability of Multicomponent Nitrides:From Unitary TiN to Senary High-Entropy (TiTaCrZrAlRu)NJOM, Vol. 65, No. 12, 2013DOI: 10.1007/s11837-013-0676-2@2013 TMS
[23] V. Sorianello, et al., "High responsivity near-infrared photodetectors in evaporated Ge-on-Si, "APPLIED PHYSICS LETTERS 101, 081101 (2012).
[24] Sungbong Park, et al., "Low dark-current Ge photodiodes on Si with intrinsic-Si-layer insertion, "978-1-4244-1768-1/08©2008 IEEE.
[25] 侯裕瑋, " Low Temperature Growth and Fabrication of Silicon-based Epitaxial Germanium Films and Photodetectors. , "National Central University/201407.
指導教授 張正陽 審核日期 2015-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明