博碩士論文 102232018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:54.91.4.56
姓名 向怡璇(Yi-Xuan Xiang)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 雙曲透鏡與雙曲共振腔之研究
相關論文
★ 平坦化陣列波導光柵分析和一維光子晶體研究★ 光子晶體波導與藕合共振波導之研究
★ 光子晶體異常折射之研究★ 光子晶體傳導帶與介電質柱波導之研究
★ 平面波展開法在光子晶體之應用★ 偏平面光子晶體能帶之研究
★ 通道選擇濾波器之探討★ 廣義光子晶體元件之研究與分析
★ 新式光子晶體波導濾波器之研究★ 廣義非均向性介質的光傳播研究
★ 光子晶體耦合濾波器之研究★ 聲子晶體傳導帶與週期性彈性柱波導之研究
★ 對稱與非對稱波導光柵之特性研究★ 雙曲透鏡之研究
★ 電磁波與聲波隱形斗篷之研究★ 次波長成像近場透鏡之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統光學透鏡受繞射極限的影響,使解析度無法小於二分之一的波長。由於顯微技術在生物、醫學等領域皆有足夠的重要性,因此,許多人試圖找出突破繞射極限的方法,而本文所探討的雙曲透鏡即為可突破此一限制的結構。
根據等效介質的概念,在波長遠大於結構的尺寸時,由兩種不同介電常數的介質排列而成的結構可等效為一個非均向的均勻介質,而雙曲透鏡即根據此種概念設計,將正介電常數介質與負介電常數介質(通常為金屬)週期排列成同心圓柱結構,適當地選擇工作頻率與結構的金屬與介電質的厚度比,可設計出具有相反符號的徑向與切向介電常數的結構。此種結構不僅能突破繞射極限還可在遠場成像。
本論文研究雙曲透鏡的特性。利用COMSOL Multiphysics模擬軟體,探討不同結構參數對雙曲透鏡解析度之影響,探討其可傳播的最遠距離。此外,我們從雙曲透鏡遠場傳播所需要滿足的條件,探討當波無法傳遞到遠場時,將此種結構視為共振腔的可能性。
摘要(英) Classical optics is restricted by the diffraction limit, so the resolution can’t distinguish the fine details of scale less than half of the wavelength. Since microscopy plays an important role in the biological and medical research fields, many people tried to find ways to overcome the restrictions of diffraction limit. Hyperlens is the main structure designed for breaking these restrictions.
According to the conception of Effective Medium Theory, when the wavelength is much larger than the size of the structure, structure consists of two different materials aligned periodically behaves like an anisotropic-homogeneous medium. Hyperlens is designed with this concept. Hyperlens consists of alternating concentric layers of media which have opposite sign of permittivity along the radial and azimuth direction. This structure as a lens can overcome the diffraction limit and imaging at the far field zone.
In this thesis we study the optical properties of hyperlens numerically. All the simulations are implemented with the COMSOL Multiphysics software. We study the influences of various parameters on the resolution of images. We also explored the possibility of using this structure as an optical cavity if the condition for far-field subwavelength imaging cannot be satisfied.
關鍵字(中) ★ 雙曲透鏡 關鍵字(英) ★ Hyperlens
論文目次 摘要 i
Abstract ii
誌謝 iii
圖目錄 vi
表目錄 ix
第一章 序論 1
1.1 前言 1
1.2 研究動機 3
第二章 基礎理論 5
2.1均勻非均向性介質的色散關係 5
2.2 傳遞矩陣與週期性層狀介質的色散關係 6
2.3 雙曲透鏡(Hyperlens) 12
2.3.1 角動量資訊 13
2.3.2 雙曲透鏡之次波長成像原理 14
第三章 數值模擬 17
3.1 雙曲透鏡內半徑之探討 17
3.3雙曲透鏡遠場傳播及解析度之極限 31
3.4橢圓型式色散關係 35
第四章 共振腔 41
4.1 品質因子(Q Factor) 41
4.2 光子晶體共振腔 43
4.3 數值模擬 45
第五章 結論與未來展望 55
5.1 結論 55
5.2 未來展望 56
參考資料 57
參考文獻 [1] V. G. Veselago, “ The electrodynamics of substances with simultaneously negative values of ε and μ”, Sov. Phys. Usp. 10, 509 (1968).
[2] J.B. Pendry, A.J. Holden, W,J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures”, Phys. Rev. Lett. 76, 4773 (1996).
[3] J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, “ Magnetism from Conductors, and Enhanced Non-Linear Phenomena,” IEEE transactions on microwave theory and techniques 47, 2075-2084 (1999).
[4] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “ Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., 84, 4184-4187, (2000).
[5] J. B. Pendry, “Negative Refraction Makes a Perfect Lens”, Phys. Rev. Lett. 85, 3966 (2000).
[6] Nicholas Fang, Hyesog Lee, Cheng Sun, Xiang Zhang, “Sub–Diffraction-Limited Optical Imaging with a Silver Superlens”,Science 308, 534-537(2005)
[7] Zubin Jacob, Leonid V. Alekseyev and Evgenii Narimanov,” Optical Hyperlens: Far-field imaging beyond the diffraction limit” , Optics Express, 14,18 ,8247 (2006)
[8] Zhaowei Liu, Hyesog Lee, Yi Xiong, Cheng Sun, Xiang Zhang,” Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects”, Science 315, 1686 (2007)
[9] ChangBao Ma, Ryan Aguinaldo, and ZhaoWei Liu, “Advances in the hyperlens”, Chinese Science Bulletin 55, 2618-2624(2010)
[10] 欒丕綱、陳啟昌,“光子晶體-從蝴蝶翅膀到奈米光子學”(第一版),五南出版社 (2005).
[11] 蔡爵仰,“電磁波與聲波雙曲透鏡之研究”,國立中央大學,碩士論文,民國98年。
[12] D. Lu and Z. Liu, "Hyperlenses and metalenses for far-field super-resolution imaging," Nat. comm. 3, 1205 (2012)
[13] B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature mate. 4, 207-210 (2005)
[14] Y. Tanaka, T. Asano, and S. Noda, “Design of Photonic Crystal Nanocavity with Q-factor of ~ 9 10 ”, Journal of Lightwave Technology 26, 1532-1539 (2008)
[15] 陳虹伶,“高品質環形光子晶體共振腔之研究”,國立中央大學,碩士論文,民國100 年。
[16] E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe,“Ultrahigh- Q photonic crystal nanocavities realized by the local width modulation of a line defect”, Appl. Phys. Lett. 88, 1-3 (2006)
[17] Weiwei Wan, Joseph Louis Ponsetto, and Zhaowei Liu, “Numerical study of hyperlenses for three-dimensional imaging and lithography”, Optics express ,23,14,18501 (2015)
[18] Zubin Jacob, Leonid V. Alekseyev, and Evgenii Narimanov, “Semiclassical theory of the hyperlens”, J. Opt. Soc. Am. A 24, 52 (2007)
[19] Alessandro Salandrino, Nader Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations”, Physical Review B 74, 075103 (2006)
[20] Alexander V. Kildishev, Evgenii E. Narimanov,”Impedance-matched hyperlens”, Opt. Lett. 32, 3432-3434(2007)
[21] Wenshan Cai,Vladimir Shalaev, ”Optical Metamaterials: Fundamentals and Applications”, Springer; 2010 edition.
指導教授 欒丕綱(Pi-Gang Luan) 審核日期 2017-1-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明