博碩士論文 102282004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:3.135.195.249
姓名 洪培修(Pei-Hsiu Hung)  查詢紙本館藏   畢業系所 物理學系
論文名稱 K頻段高均勻度微波材料處理系統之模擬研究與實用驗證
(Simulation study and practical verification of K-band high-uniformity microwave processing system)
相關論文
★ 一維羅倫茲電漿粒子模擬的動力學特性★ 透過高頻電磁波加速電子來間接加速質子的數值模擬研究
★ 雷射波形對相位穩定質子加速器運作的影響★ 雷射與薄膜作用產生高能質子束之模擬與理論研究
★ 外部反射線路對於磁旋返波振盪器影響之模擬研究★ 利用強場電磁波產生高能質子束的數值模擬研究
★ 考慮受激拉曼散射下多模光纖脈衝雷射放大器之最大可擷取能量的數值模擬研究★ 空間電荷極限電流密度之理論模擬研究
★ 碰撞式粒子網格模擬法之離散粒子效應對電漿波衰減的影響★ 雙脈衝雷射產生錫電漿極紫外光光源之數值研究
★ 考慮受激非彈性散射下脈衝光纖雷射放大器之最大可擷取 能量的數值模擬研究★ 雷射驅動電漿光譜和撞性電漿的動態行為之數值研究–應用於雷射生成錫電漿極紫外光光源
★ 雷射激發錫電漿產生極紫外光之頻譜分析★ 齊次平衡解析方法在求解非線性偏微分方程式的適用性分析
★ 雷射電漿電子加速器之模擬研究★ 雷射電漿質子加速機制之比較研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 使用微波對介電材料進行熱處理已被廣泛應用於科學研究及材料製程上,而微波加熱速率正比於操作頻率及電磁場強度,此高頻、高功率的需求使得K-band EIO很適合作為微波材料處理系統的微波源。本文探討之EIO腔體採用具易加工及高功率乘載能力之雙重入式方形平台耦合腔作為慢波結構,由模擬及實測顯示,經調整適當的耦合孔位置及寬度可使此EIO於單模(0-mode)並穩定操作,經實測證實此EIO在電子束電壓17.4 kV、電子束發射電流550 mA的操作條件下,輸出功率可達1.776 kW,電子效率達18.56 %,共振頻為24.324 GHz。
當以線性極化波對介電質進行加熱時,會因極化電荷屏蔽效應而導致加熱效果不均勻,尤其在處理高介電常數和非等軸比形狀的樣品時特別嚴重,此負面效應在可透過採用圓極化波來獲得改善。本文探討之單脊式K-band圓極化號角天線具有良好的極化轉換性能及易製性,模擬及實測證實此圓極化天線在23.5 GHz ~24.5 GHz之頻率範圍區間,反射損失低於-20 dB、指向軸長比低於0.7 dB且天線增益大於20 dB,此新設計之圓極化號角天線結構簡單並較其他形式極化器適用於高功率操作。
經由模擬方式驗證,高頻及高功率之圓極化波可顯著提升加熱速率及均勻性,使K-band EIO及圓極化天線適合應用於微波材料處理系統,更可廣泛應用於通訊系統中。
摘要(英) Microwave heating for dielectric material processing havs been widely employed in scientific research and manufacturing. Microwave heating rate is proportional to the operating frequency and the intensity of the electromagnetic field. The high frequency and high-power requirements make K-band extended interaction oscillators (EIO) a suitable candidate for microwave processing systems. A square doubly reentrant coupled cavity is proposed as a slow-wave resonant structure in K-band EIO in this study due to its easy fabrication and high-power capability. The EIO is designed to be operated at single 0-mode, and the simulation results show that the competing π/5-mode can be effectively suppressed by properly choosing the width and location of the output coupler. A stable, single-mode and high-performance operation of EIO is thus successfully demonstrated by simulation and experiments in the paper. The experimental measurement gives maximum 1.776 kW output power (18.56 % electronic efficiency) and wave frequency 24.324 GHz at beam voltage 17.4 kV and beam current 550 mA.
Polarization-charge shielding may result in uneven power deposition in the samples when a linearly polarized wave is used, especially for samples with a relatively high permittivity and particular shape of the aspect ratio. Uneven heating and excessive temperature spread during microwave processing can be remedied by using a circularly polarized wave. A single-ridged K-band circularly polarized horn antenna offering excellent performance has been developed by improving the polarization conversion and manufacturing complexity. The numerical and experimental results are consistent showing the performance of the circularly polarized horn antenna to be sufficient to meet the requirements of K-band microwave processing systems with <-20 dB return loss, <0.7 dB axial ratio at the boresight direction, and >20 dB power gain in the frequency range from 23.5 GHz to 24.5 GHz. The newly designed circularly polarized horn antenna has a simple structure and outperforms many existing circular polarization devices in high-power operations.
It has been verified by simulation that a circularly polarized wave with high-frequency and high-power can significantly improve the heating rate and uniformity. These properties make microwave devices such as K-band EIOs and circularly polarized antennas suitable for use in microwave processing systems. These microwave devices can also be widely applied in communication systems.
關鍵字(中) ★ 微波材料處理系統
★ 圓極化天線
★ 分布作用振盪器
關鍵字(英) ★ microwave processing system
★ circularly polarized horn antenna
★ extended interaction oscillator
論文目次 目 錄
摘要 i
目錄 iv
圖目錄 v
表目錄 ix
第一章 緒論
1-1 微波應用及微波源選用 1
1-2 微波材料處理系統簡介 6
1-3 論文概觀 11
第二章 分布作用振盪器模擬分析及實測
2-1 微波共振腔之相關學理 14
2-2 冷、熱測模擬分析 18
2-3 變動電子束發射電流及電壓之熱測模擬與實測 27
2-4 電子調頻現象之探討 38
第三章 圓極化天線模擬分析及實測
3-1 極化轉換器之相關學理 44
3-2 極化轉換器之模擬分析 48
3-3 圓極化天線之模擬與實測 57
第四章 微波材料處理系統功能模擬驗證
4-1 長條狀介電質對不同頻率之微波吸收率模擬 72
4-2 長條狀介電質對不同極化之微波吸收率模擬 75
4-3 圓盤狀介電質對不同極化之微波吸收率模擬 79
第五章 結語 81
參考文獻 83
附錄A. 共振腔中之軸上電場推導 87
附錄B. 電子束負載導納推導 90
附錄C. 遠場電場與軸長比關係之推導 94
附錄D. 左旋及右旋圓極化增益差值與軸長比關係之推導 99
參考文獻 參 考 文 獻
[1] A.V. Gaponov-Grekhov and V.L. Granatstein, Applications of high power microwaves, Artech House, Boston, MA, 1994.
[2] S. Jojo and R. Mahendran, "Radio frequency heating and its application in food processing: A review", International Journal of Current Agricultural Research Vol. 1, No. 9, pp. 042–046, Sep. 2013.
[3] W. G. Kauman, "High-frequency electric current for drying of wood – Historical perspectives", H. Resch, Maderas. Ciencia y tecnología Vol. 8, No. 2, pp.67–82, Jan. 2006.
[4] M. Oghbaei and O. Mirzaee, "Microwave versus conventional sintering: A review of fundamentals, advantages and applications", Journal of Alloys and Compounds 494, pp.175–189, 2010.
[5] Y. V. Bykov, K. I. Rybakov, and V. E. Semenov, "High-temperature microwave processing of materials", Journal of Physics D: Appl. Phys. Vol. 34, R55–R75, Jun. 2001.
[6] D. Agrawal, "Microwave sintering of ceramics, composites and metallic materials, and melting of glasses", Transactions of the Indian Ceramic Society, Vol. 65, No. 3, pp. 129–144, Sep. 2006.
[7] M. S. Lin, S. M. Lin, W. Y. Chiang, L. R. Barnett, and K. R. Chu, "Effects of polarization-charge shielding in microwave heating", Physics of Plasmas Vol. 22, No. 8, Jul. 2015.
[8] W. Y. Chiang, M. H. Wu, K. L. Wu, M. H. Lin, H. H. Teng, Y. F. Tsai, C. C. Ko, E. C. Yang, J. A. Jiang, L. R. Barnett, and K. R. Chu, "A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber", Rev. Sci. Instrum. Vol. 85, No. 8, Jul. 2014.
[9] P. Piyasena, C. Dussault, T. Koutchma, H. S. Ramaswamy, and G. B. Awuah, "Radio Frequency Heating of Foods: Principles, Applications and Related Properties - A Review", Crit. Rev. Food Sci. Nutr. 43, pp. 587–606, 2003.
[10] A.S. Gilmour, Jr, Microwave Tubes, Norwood, MA, USA: Artech House, 1986.
[11] M. Chodorow and T. Wessel-Gerg, "A high-efficiency klystron with distributed interaction", IRE Trans. Electronic Devices, Vol. 8, No. 1, pp. 44–55, Jan. 1961.
[12] M. Chodorow and B. Kulke, "An extended-interaction klystron: Efficiency and bandwidth", IEEE Trans. Electron Device, Vol. 13, No. 4, pp. 439–447, Apr. 1966.
[13] G. Dohler, D. Gagne, D. Gallagher and R. Moats, "Serpentine waveguide TWT," 1987 International Electron Devices Meeting, Washington, DC, USA, pp. 485-488, Dec. 1987.
[14] W. Zhenhua, Z. Kaichun and L. Shenggang, "The preliminary experiment of Ka-band pulsed folded waveguide extended interaction oscillator", 35th International Conference on Infrared, Millimeter, and Terahertz Waves, Rome, pp. 1-2, Sep. 2010.
[15] A.S. Gilmour, Jr, Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers, and Gyrotrons. Norwood, MA, USA: Artech House, 2011.
[16] Y. Zhong, Y. Wang, C. Ruan, S. Wang and W. Liu, " Structure design and simulation of extended interaction oscillator", 2013 IEEE 14th International Vacuum Electronics Conference (IVEC), pp. 1-2, 2013
[17] L.M. Chen, H.Z. Guo, H.Y. Chen, M.H. Tsao, T.T. Yang, Y.C. Tsai, and K.R. Chu, "An extended interaction oscillator based on a complex resonator structure", IEEE Trans. Plasma Sci., vol. 28, no. 3, pp.626–632, Jun. 2000.
[18] N. Yoneda, M. Miyazaki, H. Matsumura, and M. Yamato, "A design of novel grooved circular waveguide polarizers", IEEE Trans. Microwave Theory Tech., Vol. 48, No. 12, pp. 2446–2452, Dec. 2000.
[19] N. Yoneda, M. Miyazaki, T. Horie, and H. Satou, "Mono-grooved circular waveguide polarizers", IEEE MTT-S Int. Microwave Symp. Dig., pp. 821–824, Jun. 2002.
[20] G. Bertin, B. Piovano, L. Accatino, and M. Mongiardo, "Full-wave design and optimization of circular waveguide polarizers with elliptical irises", IEEE Trans. Microwave Theory Tech., Vol. 50, No. 4, pp. 1077–1083, Apr. 2002.
[21] N. C. Albertsen and P. Skov-Madsen, "A compact septum polarizer", IEEE Trans. Microwave Theory Tech., Vol. 31, No. 8, pp. 654–660, Aug. 1983.
[22] J. Esteban and J. M. Rebollar, "Field theory CAD of septum OMT-polarizers", IEEE AP-S Symp. Dig., pp. 2146-2149, Jun. 1992.
[23] Ilkyu Kim and Yahya Rahmat-Samii, "Revisiting stepped septum circular polarizer using full-wave simulations", IEEE AP-S Symp., pp. 919–921, Jul. 2011.
[24] T. L. Zkang, Z. H. Yan, "A Ka dual-band circular waveguide polarizer", IEEE Trans. Microwave Theory Tech., Oct. 2006.
[25] S. W. Wang, C. H. Chien, C. L. Wang, "A circular polarizer designed with a dielectric septum loading", IEEE Trans. Microwave Theory Tech., Vol. 52, No. 7, pp. 1719–1723, Jul. 2004.
[26] T.H. Chang, L.R. Barrnett, K.R. Chu, F. Tai, and C.L. Hsu, "A dual-function circular polarization converter for microwave/plasma processing systems", Rev. Sci. Instrum. Vol. 70, No. 2, Feb. 1999.
[27] Y. Zhou, H. Wang, J. Li, and H. Jin, "A compact high efficiency power divider/combiner based on quadruple-ridged waveguide", IEICE Electronics Express, Vol. 13, No. 9, May 2016.
[28] J. H. Hwang, and Y. Oh, "Compact orthomode transducer using single-ridged triangular waveguides", IEEE Microwave and Wireless Components Letters, Vol. 21, No. 8, pp. 412–414, Aug. 2011.
[29] Y. Du, K. Zhao, and Z. J. Zeng, "Design and simulation of an UWB single-ridge waveguide band-pass filter", IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, pp. 278–281, Oct. 2013.
[30] S. J. Cook, "Circular polarity elliptical horn antenna", U.S. Patent, Patent No. 7239285 B2, Jul. 2007.
[31] 楊祥林、張兆鏜、張祖舜,微波器件原理,電子工業出版社,北京,1985。
[32] 電子管設計手冊編輯委員會,大功率速調管設計手冊,國防工業出版社,北京,1979。
[33] G.M. Branch, "Electron beam coupling in interaction gaps of cylindrical symmetry", IRE Trans. Electron Devices, Vol. 8, No. 3, pp. 193–207, May 1961.
[34] J.R.M. Vaughan, "A model for the klystron cavity gap", IEEE Trans. Electron Devices, Vol. 32, No. 11, pp. 193–207, Nov. 1985.
[35] E.J. Craig, "The beam-loading admittance of gridless klystron gaps", IEEE Trans. Electron Devices, Vol. 14, No. 5, pp. 273–278, May. 1967.
[36] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed., John Wiley & Sons, Inc , 2005.
[37] 李宗謙,余京兆,微波技術,第一版,西安交通大學出版社,1991。
[38] D. M. Pozar, Microwave Engineering, 4th ed., John Wiley & Sons, Inc., 2012.
指導教授 陳仕宏(Shih-Hung Chen) 審核日期 2022-9-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明