博碩士論文 102283603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.141.200.59
姓名 李諾珠(Le Thi Ngoc Chuc)  查詢紙本館藏   畢業系所 化學學系
論文名稱 鈀催化的異構化和內酯化
(Palladium Catalyzed Isomerization and Lactonization)
相關論文
★ 含胺基之二苯乙烯衍生物的分子內光誘導電子轉移之C-N斷鍵反應及激態錯合體之研究★ 新型含1,2,3-三氮唑之雙光子吸收材料的合成及其光學性質探討
★ 紫質衍生物研究:間位苯卟啉分子的鋅離子感測及大環紫質的構型★ Squamocin 之合成研究
★ 發展4,4’-亞甲基對苯胺或聯苯胺為骨架的四氯衍生物作為人類麩胺基硫轉移酶抑制劑的合成及構效關係的探討★ 含有香豆素的石膽酸類似物作為唾液酸轉移酶抑制劑的合成與初步活性測試
★ 石膽酸C4含氟唾液酸轉移酶抑制劑和苯並惡嗪酮相關的螢光探針之合成及生物研究★ 合成和優化2-(1-乙基-3,5-二甲基-1H-吡唑-4-基)乙-1-胺衍生物和其抗三陰性乳腺癌細胞的體外活性研究
★ 以蛋白質體學探討在大腸桿菌中甲醇利用代謝途徑★ Data-independent acquisition mass spectrometry analysis for identification of cerebrospinal fluid biomarker of reversible cerebral vasoconstriction syndrome
★ 從手性N-亞磺醯胺進行非對映選擇性磷酯基化反應建構高度選擇性的α-胺基磷酸酯★ DNA型式碳水化合物抗原之生物偵測器的開發及應用
★ 合成具有分子腳架之多並苯化合物且用於自組裝分子薄膜之研究★ 1,3-偶極環化加成反應在藥物合成與醣晶片上的應用
★ 平面化寡聚萘分子之合成及其光學、電學性 質研究★ 多並苯醚類化合物的合成與多並苯醚類化合 物於自組裝分子薄膜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-4-1以後開放)
摘要(中) 本 文 的 工 作 分 為 兩 章。在 第 一 章 中,使 用 鈀(0)納 米 粒 子 實 現 了 2-alkenylbenzoic acid 衍 生 物 的 異 構 化 以 生 成(E)-烯 烴。該 反 應 的 範 圍 包括 羧 酸,酯 和 醯 胺,並 能 耐 受 苯 環 上 的 各 種 取 代 基。異 構 化 反 應 由 可 回 收 的 Pd(0) 納 米 顆 粒 催 化,該 顆 粒 由 PdCl2 原 位 制 備,並 通 過 X 射 線 粉 末 衍 射 和 掃 描 電 子 顯 微 鏡 分 析 進 行 表 征。 1H NMR 研 究 和 動 力學 建 模 支 持 逐 步 過 程。該 新 方 法 被 用 于 高 效 合 成 天 然 二 氫 異 香 豆 素。

在 第 二 章 中,討 論 了 合 成 的 鄰 苯 二 甲 酸 酯 化 合 物。用 1,2-bis(phenylsulfinyl)ethane palladium(II) acetate (White catalyst) 氧 氣 在 DMSO 中 實 現 2-allylbenzoic acids (1) 的 烯 丙 基 氧 化 生 成 3-ethylidenephthalides (3) 或 3-vinylphthalides (4) 在 堿 性 條 件 或 酸 性 條 件 下。將 反 應 條 件 應 用 於 各 種 取 代 的 2-allylbenzoic acids。還 討 論 了 該 反 應 的 機 理。
摘要(英) The work presented in this thesis has been divided into two chapters. In chapter one, isomerization of 2-alkenylbenzoic acid derivatives to give (E)-alkenes was achieved with palladium(0) nanoparticles. The scope of this reaction includes carboxylic acid, ester, and amides and tolerates various substituents on the benzene ring. This isomerization reaction was catalyzed by recyclable Pd(0) nanoparticles, prepared in situ from PdCl2 and characterized by X-ray powder diffraction and scanning electron microscopy analyses. 1H NMR studies and kinetic modeling supported a stepwise process. This new process was applied to synthesize a natural dihydroisocoumarin with good efficiency.



In chapter two deals with the phthalide compounds synthesised. Allylic oxidation of 2-allylbenzoic acids (1) to give 3-ethylidenephthalides (3) or 3-vinylphthalides (4) was achieved with 1,2-bis(phenylsulfinyl)ethane palladium(II) acetate (White catalyst), oxygen in DMSO under the basic condition or the acidic conditon. The reaction conditions were applied to various substituted 2-allylbenzoic acids. The mechanism of this reaction is also discussed.


關鍵字(中) ★ 鈀催化劑
★ 異構化
★ 漆膜化
關鍵字(英) ★ palladium catalyst
★ Isomerization
★ Lactonization
論文目次 Table of Contents

Abstract i
Acknowledgements ii
Table of Contents iii
List of Tables v
List of Figures vi
List of Schemes vii
List of Appendix for chapter one viii
List of Appendix for chapter two xiii
List of Symbols and Abbreviations xvii
Chapter One: 1
Palladium catalyzed Isomerization of 2-Alkenylbenzoic Acids 1
1.1 Introduction 1
1.2 Isomerization of benzene containing olefins 2
1.2.1 Allylbenzene isomerization reaction 2
1.2.2 Base-assisted “Carbon-Claisen” rearrangement of 4-phenyl-1-butene 2
1.2.3 Palladium catalyzed isomerization of alkenes: a pronounced influence of an o-phenol hydroxyl group 3
1.3 The reaction was carried out with 2- (3-butene)benzoic Acid 1a 6
1.4. Optimization of reaction conditions 8
1.5 Results and discussions 10
1.5.1 Isomerization of Substituted 2-(3-Butenyl)benzoic Acids 10
1.5.2 Isomerization of 2-Alkenylbenzoic Acids 12
1.5.3 Monitor the reaction 14
1.5.4 Recycling studies for the isomerization reaction of 1a 17
1.5.5 Isomerization reactions catalyzed by various Pd sources 18
1.5.6 New synthesis of dihydroisocoumarin 33 19
1.6 Summary 20
1.7 References 20
Chapter Two: 23
Palladium catalyzed Allylic Oxidation and Lactonization of 2-Allylbenzoic Acids 23
2.1 Introduction 23
2.2 Literature reviews 23
2.3 Results and discussions 26
2.3.1 Optimization of reaction conditions 26
2.3.2 Allylic oxidation of substituted 2-allylbenzoic Acids 30
2.3.3 Synthesis of 3-ethyl-6-hydroxyphthalide (6) 32
2.3.4 Mechanistic experiments 33
2.4 Summary 37
2.5 References 37
3. Experimental section for chapter one 41
3.1 General procedure for the Pd-catalyzed isomerization of o-Alkenylbenzoic acids. 41
3.2 Synthesis of Dihydroisocoumarin 33 57
3.3 References 60
4. Experimental section for chapter two 62
4.1 Synthesis of 2-Alkenylbenzoic Acids 62
4.2 General procedure for the White catalyst lactonization of 2-allylbenzoic Acids. 63
4.3 Synthesis of 3-Ethyl-6-hydroxyphthalide (6) 74
4.4 Synthesis of compound 1-D2 75
4.5 Kinetic Isotope Effect (KIE) 79
4.5.1 Procedure for kinetic isotope effect 79
4.5.2 Starting material 1 + 1 N NaOH 79
4.5.3 Starting material 1-D2 + 1 N NaOH 82
4.5.4 Kinetic isotope effect in the basis condition 84
4.5.5. Starting material 1 + 1 N HCl 84
4.6 References 88
Appendix for chapter one 82
Appendix for chapter two 191
參考文獻 1.7 References

1. (a) Trost, B. M.Angew. Chem., Int. Ed. Engl. 1995, 34, 259-281. (b) Trost, B. M.Acc. Chem. Res. 2002, 35, 695-705. (c) Arisawa, M. Chem. Pharm. Bull. 2007, 55, 1099-1118. (d) Li, C.-J.; Trost, B. M.Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 13197-13202. (e) Cadierno, V.; Crochet, P.; Garcia-Garrido, S. E.; Gimeno, J. Dalton Trans. 2010, 39, 4015-4031. (f) Lorenzo-Luis, P.; Romerosa, A.; Serrano-Ruiz, M.ACS.Catal. 2012, 2, 1079-1086. (g) Behr, A.; Vorholt, A. J.; Ostrowski, K. A.; Seidensticker, T.Green Chem. 2014, 16, 982-1006.
2. Review: (a) Hassam, M.; Taher, A.; Arnott, G. E.; Green, I. R.; van Otterlo, W. A. L.Chem. Rev. 2015, 115, 5462-5569. (b) Larionov, E.; Li, H. H.; Mazet, C.Chem. Commun. 2014, 50, 9816-9826. (c) Donohoe, T. J.; O’Riordan, T. J. C.; Rosa, C. P.Angew. Chem., Int. Ed. 2009, 48, 1014-1017. (d) Bai, X.-F.; Song, T.; Deng, W.- H.; Wei, Y.-L.; Li, L.; Xia, C.-G.; Xu, L.-W.Synlett. 2014, 25, 417-422.
3. Lin, L.; Romano, C.; Mazet, C.J. Am. Chem. Soc. 2016, 138, 10344-10350.
4. Shimizu, A.; Otsu, T.; Imoto, M. Bull. Chem. Soc. Jpn 1968, 41, 953-959.
5. (a) Tooley, P.A.; Arndt, L. W.; Darensberg, M. Y. J. Am. Chem. Soc. 1985, 107, 2422-2427. (b) Bricout, H.; Mortreux, A.; Monflier, E. J. Organomet. Chem. 1998, 553, 469-471. (c) Satyanarayana, N.; Periasamy, M. J. Organomet. Chem. 1987, 319, 113-118 (d) Averbuj, C.; Eisen, M. S. J. Am. Chem. Soc. 1999, 121, 8755-8759 (e) Shaviv, E.; Botoshansky, M.; Eisen, M. S. J. Organomet. Chem. 2003, 683, 165-180 (f) Arisawa, M.; Terada, Y.; Nakagawa, M.; Nishida,A. Angew. Chem., Int. Ed. 2002, 41, 4732-4734. (g) Morrill, T. C.; D’Souza, C. A. Organometallics. 2003, 22, 1626-1629. (h) Baxendale, I. R.; Lee, A.-L.; Ley, S. V. Synlett 2002, 516-518.
6. Newcomb, M.; Vieta, R. S. J. Org. Chem. 1980, 45, 4793-4795.
7. Fan, J.; Wan, C.; Wang, Q.; Gao, L.; Zheng, X.; Wang, Z. Org. Biomol. Chem. 2009, 7, 3168-3172.
8. Korte, D. E.; Wirth, R. K.; Hegedus, L. S. J. Org. Chem. 1977, 42, 1329-1336.
9. Baghdanov, V. M.; Hauser, F. M. J. Org. Chem. 1988, 53, 4676-4681.
10. Mal, D.; Majumdar, G.; Pal, R. J. Chem. Soc., Perkin Trans. 1 1994, 1115-1116.
11. Li, Y.; Jardine, K. J.; Tan, R.; Song, D.; Dong, V. M. Angew. Chem., Int. Ed. 2009, 48, 9690-9692.
12. Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry, University Science Books: Sausalito, 2006, 112.
13. Thompson, H. W.; Naipawer, R. E. J. Am. Chem. Soc. 1973, 95, 6379-6386.
14. Greenhalgh, M. D.; Thomas, S. P. Chem. Commun. 2013, 49, 11230-11232.
15. (a) Newcomb, M.; Vieta, R. S. J. Org. Chem. 1980, 45, 4793-4795. (b) Yamakawa, T.; Yoshikai, N. Chem. Asian J. 2014, 9, 1242-1246.
16. Hassam, M.; Taher, A.; Arnott, G. E.; Green, I. R.; van Otterlo, W. A. L. Chem. Rev. 2015, 115, 5462-5569.
17. Qian, H.-S.; Antonietti, M.; Yu, S.-H. Adv. Funct. Mater .2007, 17, 637-643.
18. (a) Duan, Y.; Zheng, M.; Li, D.; Deng, D.; Wu, C.; Yang, Y. RSC Adv. 2017, 7, 3443-3449. (b) Hanrieder, E. K.; Jentys, A.; Lercher, J. A. ACS Catal. 2015, 5, 5776-5786. (c) Selivanova, A. V.; Tyurin, V. S.; Beletskaya, I. P. ChemPlusChem 2014, 79, 1278-1283.
19. (a) Kim, B.-H.; Lee, S.-H.; Han, S.-W.; Ahn, S.; Noh, J.; Park, J. B. Mater. Express 2016, 6, 61-68. (b) Abate, S.; Perathoner, S.; Centi, G. Catal. Today 2012, 179, 170-177. (c) Cookson, J. Platinum Met. Rev. 2012, 56, 83-98.
20. Kang, Y.-B.; Chen, X.-M.; Yao, C.-Z.; Ning, X.-S. Chem. Commun. 2016, 52, 6193-6196.
21. (a) Kazlauskas, R.; Mulder, J.; Murphy, P. T.; Wells, R. J .Aust. J. Chem.1980, 33, 2097-2101. (b) Amico, V.; Biondi, D.; Cunsolo, F.; Ruberto, G.J. Nat. Prod.1990, 53, 1379-1382.
22. (a) Senboku, H.; Nagakura, K.; Fukuhara, T.; Hara, S.Tetrahedron 2015, 71, 3850-3856. (b) Vogel, S.; Stembera, K.; Hennig, L.; Findeisen, M.; Giesa, S.; Welzel, P.; Lampilas, M. Tetrahedron 2001, 57, 4139-4146.
23. (a) Medina, F. G.; Marrero, J. G.; Macías-Alonso, M.; Gonzá lez, M. C.; Có rdova-Guerrero, I.; García, A. G. T.; Osegueda-Robles, S. Nat Prod. Rep. 2015, 32, 1472-1507. (b) Thakur, A.; Singla, R.; Jaitak, V. Eur. J. Med. Chem. 2015, 101, 476-495.

2.5 References
1. (a) Pang, X.; Lin, X.; Yang, J.; Zhou, X.; Yang, B.; Wang, J.; Liu, Y. J. Nat. Prod. 2018, 81, 1860-1868; (b) Kamauchi, H.; Shiraishi, Y.; Kojima, A.; Kawazoe, N.; Kinoshita, K.; Koyama, K. J. Nat. Prod. 2018, 81, 1290-1294; (c) Zou, J.; Chen, G.-D.; Zhao, H.; Huang, Y.; Luo, X.; Xu, W.; He, R.-R.; Hu, D.; Yao, X.-S.; Gao, H. Org. Lett. 2018, 20, 884-887; (d) Zheng, N.; Yao, F.; Liang, X.; Liu, Q.; Xu, W.; Liang, Y.; Liu, X.; Li, J.; Yang, R. Nat. Prod. Res. 2018, 32, 755-760; (e) Wei, W.; Xu, W.; Yang, X.-W. J. Asian Nat. Prod. Res. 2017, 19, 704-711; (f) Fang, W.; Wang, J.; Wang, J.; Shi, L.; Li, K.; Lin, X.; Min, Y.; Yang, B.; Tang, L.; Liu, Y.; Zhou, X. J. Nat. Prod. 2018, 81, 1405-1410.
2 (a) Beck, J. J.; Chou, S.-C. J. Nat. Prod. 2007, 70, 891-900. (b) Ran, X.; Ma, L.; Peng, C.; Zhang, H.; Qin, L.-P. Pharm Biol. 2011, 49, 1180-1189. (c) Ito, C.; Itoigawa, M.; Aizawa, K.; Yoshida, K.; Ruangrungsi, N.; Furukawa, H. J. Nat. Prod. 2009, 72, 1202-1204. (d) Kobayashi, M.; Fujita, M.; Mitsuhashi, H. Chem. Pharm. Bull. 1987, 35, 1427-1433.
3. (a) da Silva Maia, A. F.; Siqueira, R. P.; de Oliveira, F. M.; Ferreira, J. G.; da Silva, S. F.; Caiuby, C. A. D.; de Oliveira, L. L.; de Paula, S. O.; Souza, R. A. C.; Guilardi, S.; Bressan, G. C.; Teixeira, R. R. Bioorg. Med. Chem. Lett. 2016, 26, 2810-2816. (b) Kam, A.; Li, K. M.; Razmovski-Naumovski, V.; Nammi, S.; Chan, K.; Li, Y.; Li, G. Q. Curr. Med. Chem. 2012, 19, 1830-1845. (c) Donkor, P. O.; Chen, Y.; Ding, L.; Qiu, F. J. Ethnopharmacol. 2016, 194, 530-548.
4. (a) Eildal, J. N. N.; Andersen, J.; Kristensen, A. S.; Jørgensen, A. M.; Bang-Andersen, B.; Jørgensen, M.; Strømgaard, K. J. Med. Chem. 2008, 51, 3045-3048. (b) Rathwell, K.; Brimble, M. A. Synthesis 2007, 5, 643-662. (c) Brimble, M. A.; Nairn, M. R.; Prabaharan, H. Tetrahedron 2000, 56, 1937-1992. (d) McNulty, J.; Keskar, K. Org. Biomol. Chem. 2013, 11, 2404-2407. (e) Molnár, B.; Simig, G.; Bakó, T.; Dancsó, A.; Volk, B. Tetrahedron Lett. 2012, 53, 2922-2924. (f) Garibay, P.; Vedsø, P.; Begtrup, M.; Hoeg-Jensen, T. J. Comb. Chem. 2001, 3, 332-340. (g) Faigl, F.; Thurner, A.; Molnár, B.; Simig, G.; Volk, B. Org. Process Res. Dev. 2010, 14, 617-622. (h) Kobayashi, S.; Tamanoi, H.; Hasegawa, Y.; Segawa, Y.; Masuyama, A. J. Org. Chem. 2014, 79, 5227-5238.
5. (a) Cui, H.; Liu, Y.; Li, J.; Huang, X.; Yan, T.; Cao, W.; Liu, H.; Long, Y.; She, Z. J. Org. Chem. 2018, 83, 11804-11813; (b) Giap, T. H.; Dung, N. A.; Thoa, H. T.; Dang, N. H.; Dat, N. T.; Hang, N. T. M.; Van Cuong, P.; Van Hung, N.; Van Minh, C.; Mishchenko, N. P.; Fedoreev, S. A.; Thanh, L. N. Chem. Nat. Compd. 2018, 54, 34-37; (c) Van Nguyen, K.; Duong, T.-H.; Nguyen, K. P. P.; Sangvichien, E.; Wonganan, P.; Chavasiri, W. Tetrahedron Lett. 2018, 59, 1348-1351; (d) Wu, Y.-Z.; Zhang, H.-W.; Sun, Z.-H.; Dai, J.-G.; Hu, Y.-C.; Li, R.; Lin, P.-C.; Xia, G.-Y.; Wang, L.-Y.; Qiu, B.-L.; Zhang, J.-F.; Ge, G.-B.; Lin, S. Eur. J. Med. Chem. 2018, 145, 717-725; (e) Yao, F.; Liang, X.; Liu, Q.; Xu, W.; Liang, Y.; Liu, X.; Li, J.; Yang, R. Nat. Prod. Res. 2018, 32, 755-760.
6. (a) Karmakar, R.; Pahari, P.; Mal, D. Chem. Rev. 2014, 114, 6213-6284. (b) Lin, G.; Chan, S. S.-K.; Chung, H.-S.; Li, S.-L., In Studies in Natural Products Chemistry, Atta ur, R., Ed. Elsevier: 2005; Vol. 32, pp 611-669.
7. (a) Ziegert, R. E.; Toräng, J.; Knepper, K.; Bräse, S. J. Comb. Chem. 2005, 7, 147-169. (b) Antonia Di, M.; Laura, P.; Antonio, M. Curr. Org. Chem. 2012, 16, 2302-2320.(c) Willis, M. C. Angew. Chem., Int. Ed. 2010, 49, 6026-6027.
8. (a) Mahendar, L.; Satyanarayana, G. J. Org. Chem. 2015, 80, 7089-7098; (b)
Mahendar, L.; Satyanarayana, G. J. Org. Chem. 2016, 81, 7685-7691; (c) Dussart, N.; Trinh, H. V.; Gueyrard, D. Org. Lett. 2016, 18, 4790-4793; (d) Dow, G. T.; Thoden, J. B.; Holden, H. M. Protein Science 2016, 25, 2282-2289; (e) Yang, J.; Yoshikai, N. J. Am. Chem. Soc. 2014, 136, 16748-16751; (f) Fei, X.-D.; Ge, Z.-Y.; Tang, T.; Zhu, Y.-M.; Ji, S.-J. J. Org. Chem. 2012, 77, 10321-10328; (g) Kuriyama, M.; Ishiyama, N.; Shimazawa, R.; Shirai, R.; Onomura, O. J. Org. Chem. 2009, 74, 9210-9213; (h) Roiser, L.; Waser, M. Org. Lett. 2017, 19, 2338-2341; (i) Zhang, B.; Xu, M.-H.; Lin, G.-Q. Org. Lett. 2009, 11, 4712-4715.
9. (a) Korte, D. E.; Hegedus, L. S.; Wirth, R. K. J. Org. Chem. 1977, 42, 1329-1336.
(b) Larock, R. C.; Hightower, T. R. J. Org. Chem. 1993, 58, 5298-5300.
10. (a) Kopp, F.; Wunderlich, S.; Knochel, P. Chem. Commun. 2007, 2075-2077. (b)
Miles, K. C.; Le, C. C.; Stambuli, J. P. Chem. Eur. J. 2014, 20, 11336-11339.
11. Liu, J.; Miotto, R. J.; Segard, J.; Erb, A. M.; Aponick, A. Org. Lett. 2018, 20, 3034
-3038.
12. Takenaka, K.; Akita, M.; Tanigaki, Y.; Takizawa, S.; Sasai, H. Org. Lett. 2011, 13,
3506-3509.
13. Trend, R. M.; Ramtohul, Y. K.; Stoltz, B. M. J. Am. Chem. Soc. 2005, 127, 17778-
17788.
14. Krätzschmar, F.; Kaßel, M.; Delony, D.; Breder, A. Chem. Eur. J. 2015, 21, 7030-
7034.
15. (a) Chen, M. S.; White, M. C. J. Am. Chem. Soc. 2004, 126, 1346-1347. (b) Chen,
M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am. Chem. Soc. 2005, 127, 6970-
6971. (c) Fraunhoffer, K. J.; Prabagaran, N.; Sirois, L. E.; White, M. C. J. Am. Chem.
Soc. 2006, 128, 9032-9033. (d) Fraunhoffer, K. J.; White, M. C. J. Am. Chem. Soc. 2007, 129, 7274-7276. (e) Covell, D. J.; White, M. C. Angew. Chem., Int. Ed. 2008, 47, 6448-6451. (f) Young, A. J.; White, M. C. J. Am. Chem. Soc. 2008, 130, 14090-14091. (g) Reed, S. A.; White, M. C. J. Am. Chem. Soc. 2008, 130, 3316-3318. (h) Reed, S. A.; Mazzotti, A. R.; White, M. C. J. Am. Chem. Soc. 2009, 131, 11701-11706. (i) Rice, G. T.; White, M. C. J. Am. Chem. Soc. 2009, 131, 11707-11711. (j) Strambeanu, I. I.; White, M. C. J. Am. Chem. Soc. 2013, 135, 12032-12037. (k) Osberger, T. J.; White, M. C. J. Am. Chem. Soc. 2014, 136, 11176-11181. (l) Pattillo, C. C.; Strambeanu, I. I.; Calleja, P.; Vermeulen, N. A.; Mizuno, T.; White, M. C. J. Am. Chem. Soc. 2016, 138, 1265-1272.
16. Delcamp, J. H.; Brucks, A. P.; White, M. C. J. Am. Chem. Soc. 2008, 130, 11270-
11271.
17. Chen, H.; Yang, W.; Wu, W.; Jiang, H. Org. Biomol. Chem. 2014, 12, 3340-3343.
18. Lima, D. D.; Oliveira, J. P.; Seabra, M. E. P.; Andrade, M. A.; Baetas, A. C.; Borges,
R. S. J. Comput. Theor. Nanosci. 2011, 8, 97-101.
19. (a) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734-736. (b) Baldwin, J.
E.; Lusch, M. J. Tetrahedron 1982, 38, 2939-2947.
20. Westheimer, F. H. Chem. Rev. 1961, 61, 265-273.
21. (a) Anslyn, E. V.; Dougherty, D. A., Modern Physical Organic Chemistry.
University Science Books: Sausalito, California, 2006; p 421-428. (b) Carey, F. A.; Sundberg, R. J., In Advanced Organic Chemistry, Part A: Structure and Mechanisms, 5 ed.; Springer US: 2007; p 332.
22. Larionov, E.; Li, H.; Mazet, C. Chem. Commun. 2014, 50, 9816-9826.
23. Hassam, M.; Taher, A.; Arnott, G. E.; Green, I. R.; van Otterlo, W. A. L. Chem.
Rev. 2015, 115, 5462-5569.
24. Liang, Y.-F.; Jiao, N. Acc. Chem. Res. 2017, 50, 1640-1653.
指導教授 侯敦仁 審核日期 2020-3-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明