博碩士論文 102284003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.143.247.136
姓名 黃士漢(Shih-Han Huang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 Rooibos Suppresses the Proliferation, Migration and Invasion of Human Prostate Cancer Cells
(南非國寶茶抑制人類前列腺癌細胞的增生遷移與侵入)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 前列腺癌是常見的惡性腫瘤,在西方的國家中是排名第二的癌症死因。針對轉移型的前列腺癌,雄性素剝奪療法(ADT)是標準的治療方式。雖然去除雄性賀爾蒙能有效地使腫瘤消退,但大多數接受ADT治療的前列腺癌患者,腫瘤會在1-3年左右發展成賀爾蒙抗性前列腺癌(CRPC),至今對於CRPC仍然沒有一個很好的治療法,或推遲轉移性前列腺癌進程的方式。南非國寶茶Rooibos (Aspalathus linearis)是一種豆科類的灌木植物,在當地作為草本茶使用。南非國寶茶園生在南非西開普省的席德堡山脈,被認為是一種健康的茶飲,因為它無咖啡因且單寧含量低,曾經被報導指出具有抗氧化的活性。我們用了具有抗癌活性的GRT-綠色南非國寶茶(GRTTM; 12.78g aspalathin/ 100 g extract,以下簡稱GRT)萃取物進行CRPC的加藥試驗。在第一部分我們用LNCaP 104-R1細胞進行本次實驗研究,它是一株富含雄性素受體AR且為非賀爾蒙依賴的前列腺癌細胞,藉此用來模擬臨床上的CRPC。我們將LNCaP 104-R1細胞種於96孔盤之中,並且以不同濃度的GRT (10-100µg/ml)進行加藥處理,透過MTT以及Hoechst 33258染色生長測試的分析測定,證明GRT能夠抑制LNCaP 104-R1細胞的增生。透過流式細胞儀分析指出,經由GRT處理後的細胞,會增加G1以及G2/M期的細胞數,減少S時期的細胞數。彗星實驗也揭露了GRT會誘導前列腺癌細胞的DNA損傷。我們在去勢小鼠的皮下打入LNCaP 104-R1細胞,並透過管餵方式給予GRT (400mg/kg),能夠顯著地抑制腫瘤的生長。從Micro-Western Array中得知,經加藥處理GRT的LNCaP 104-R1細胞,調控生存與增生的蛋白表現量會下降,如AKT1, AKT2, AKT3, PKM2和MCL1,增加cytochrome C蛋白的表現。在細胞中過表達AKT,能夠減少GRT對於LNCaP 104-R1細胞增生的抑制,這也說明GRT的目標是AKT的訊息傳遞路徑。第二部分探討的是轉移,我們選用了C4-2B細胞,這是一株源於LNCaP的細胞,具有高度轉移到骨頭的特性。藉由transwell 實驗得知GRT能抑制LNCaP C4-2B細胞遷移與侵入。GRT處理細胞後會減少YAP, MST1, 磷酸化MST1-T183/ 磷酸化MST2-T180和paxillin,並增加E-cadherin蛋白量表現。在CRPC細胞中過表達YAP並加藥處理GRT,被抑制的遷移與侵入的現象能有部分被恢復。C4-2B細胞中加入GRT主要的類黃酮aspalathin會抑制細胞的遷移,過表達YAP會回復癌細胞的部分遷移能力。這些結果指出GRT以及其主要類黃酮aspalathin對於前列腺癌腫瘤生長與轉移有抑制效果,未來有開發為攝護腺癌輔助療法的潛力。
摘要(英) Prostate cancer (PCa) is one of the most common malignancy cancers in aged men. Androgen-deprivation therapy (ADT) is the standard treatment for advanced PCa. However, the majority of PCa patients receiving ADT will develop castration-resistant prostate cancer (CRPC) within 1-3years. Currently, there is no effective treatment for recurrent CRPC or PCa metastasis. Rooibos (Aspalathus linearis) is a shrub-like leguminous bush native to the Cedarberg Mountain in the Western Cape region of South Africa and is consumed as herbal tea. It is considered as healthy drink worldwide as it is caffeine-free and low in tannins, and it has been reported to exhibit antioxidant activity. We investigated the anti-cancer activity of aspalathin-rich green rooibos extract (GRTTM; 12.78g aspalathin/ 100 g extract) against CRPC cells. We used LNCaP 104-R1, a human AR-rich androgen-independent PCa cells, to mimic the clinical situation of CRPC. We demonstrated that GRT treatment (10-100µg/ml) suppressed the proliferation of LNCaP 104-R1 cells, as determined by MTT assay and Hoechst dye-based 96-well proliferation assay. Flow cytometry analysis indicated that GRT treatment increases the cell population in sub-G1 and G2/M phase but decreases the cell population in S phase. Comet assay revealed that GRT treatment induced DNA damage in PCa cells. Gavage of GRT (400mg/kg) reduced tumor growth of LNCaP 104-R1 xenograft in nude mice experiments. Micro-Western Array suggested that treatment with GRT (10-100µg/ml) decreased expression of proteins regulating cell proliferation and cell survival, including AKT1, AKT2, AKT3, PKM2, and MCL1, but increased protein expression cytochrome C. Over-expression of AKT rescued the suppressive effect of GRT, indicating that AKT signaling is the target of GRT. For metastasis study, we used LNCaP C4-2B cells, which were derived from bone metastasis of LNCaP sub-clone with high-metastatic activity. GRT treatment suppressed the cell migration and invasion as determined by transwell assay. GRT treatment decreased the protein expression of YAP, MST1, phospho-MST1-T183/ phospho-MST2-T180 and paxillin proteins but increased the level of E-cadherin. Over-expression of YAP rescued the suppressive effects of GRT on migration and invasion of CRPC cells. Treatment with the major flavonoid of GRT, the C-linked dihydrochalcone glucoside aspalathin (75-100 μg/ml), also reduced the migration of CRPC cells and the inhibition was partially rescued by YAP over-expression. These results suggested that GRT is a potential therapeutic agent for advanced PCa.
關鍵字(中) ★ 南非國寶茶
★ 前列腺癌
★ 凋亡
★ 增生
★ 遷移
★ 侵入
關鍵字(英) ★ Rooibos
★ Prostate cancer
★ Apoptosis
★ Proliferation
★ Migration
★ Invasion
論文目次 謝誌 I
ABSTRACT III
CONTENTS V
1. ABBREVIATIONS: 1
2. INTRODUCTION 4
2.1. PROSTATE AND PROSTATE CANCER 4
2.2. PROSTATE CANCER THERAPIES 5
2.3. ASPALATHUS LINEARIS /ROOIBOS 7
2.4. HIPPO-PATHWAY 8
2.5. APOPTOSIS 9
2.6. CELL CYCLE 10
2.7. AUTOPHAGY 11
2.8. ANTI-DIABETES AND ANTI-OBESITY EFFECTS OF ROOIBOS 12
3. MATERIALS AND METHODS 15
3.1. ROOIBOS EXTRACT GRT 15
3.2. CELL CULTURE 15
3.3. CELL PROLIFERATION ASSAY AND CHEMICALS 17
3.4. CELL VIABILITY ASSAY 17
3.5. IMMUNOFLUORESCENCE STAINING 18
3.6. FLOW CYTOMETRY ANALYSIS 19
3.7. WESTERN BLOT ANALYSIS 19
3.8. COMET ASSAY 20
3.9. XENOGRAFT EXPERIMENT IN NUDE MICE 21
3.10. OVEREXPRESSION TARGET PROTEIN 22
3.11. TRANSWELL ASSAY 22
3.12. MICRO-WESTERN ARRAY 23
3.13. STATISTICAL ANALYSIS 24
4. RESULT 25
PART 1: ROOIBOS SUPPRESSES PROLIFERATION OF CASTRATION-RESISTANT PROSTATE CANCER CELLS VIA INHIBITION OF AKT SIGNALING 25
4.1. GRT SUPPRESSED PROLIFERATION OF CASTRATION-RESISTANT PROSTATE CANCER CELLS 25
4.2. GRT TREATMENT CAUSED CELL CYCLE ARREST AND INDUCED APOPTOSIS IN CRPC CELLS 26
4.3. GRT GAVAGE SUPPRESSED TUMOR GROWTH OF LNCAP 104-R1 XENOGRAFTS IN NUDE MICE 27
4.4. GRT TREATMENT AFFECTED SIGNALING PROTEINS IN LNCAP 104-R1 CELLS 27
4.5. OVEREXPRESSION OF AKT1 RESCUED GRT-INDUCED GROWTH INHIBITION IN CRPC CELLS 28
PART 2: ASPALATHIN-RICH GREEN ASPALATHUS LINEARIS EXTRACT SUPPRESSES MIGRATION AND INVASION OF HUMAN CASTRATION-RESISTANT PROSTATE CANCER CELLS VIA INHIBITION OF YAP SIGNALING 30
4.6. EFFECT OF GRT TREATMENT ON THE MIGRATION AND INVASION OF PROSTATE CANCER CELLS 30
4.7. MICRO-WESTERN ARRAY AND WESTERN BLOTTING REVEALED THAT GRT TREATMENT SUPPRESSED EXPRESSION OF PROTEINS IN THE HIPPO-YAP SIGNALING PATHWAY 31
4.8. OVER-EXPRESSION OF YAP RESCUED THE SUPPRESSIVE EFFECTS OF GRT ON MIGRATION AND INVASION OF PROSTATE CANCER CELLS 31
4.9. ASPALATHIN TREATMENT SUPPRESSED THE MIGRATION OF PCA CELLS VIA INHIBITION OF YAP 32
4.10. GRT TREATMENT SUPPRESSED MIGRATION AND PROTEIN EXPRESSION OF YAP IN 22RV1 PCA CELLS 32
4.11. INHIBITORY OF GRT ON MIGRATION OF PROSTATE CANCER CELLS AS COMPARED TO OTHER NATURAL COMPOUNDS AND CHEMOTHERAPY DRUGS. 32
PART 3: ROOIBOS (ASPALATHUS LINEARIS) EXTRACT SUPPRESSES BODY WEIGHT AND DECREASE LIPID ACCUMULATION IN DB/DB MICE. 34
4.12. GRT GAVAGE DECREASE THE BODY WEIGHT OF DB/DB MICE 34
4.13. GRT DECREASE THE FAT ACCUMULATION IN FAT TISSUE 34
PART 4: GRT INDUCED APOPTOSIS IN ENZALUTAMIDE MDV3100 HUMAN PROSTATE CANCER CELLS. 35
4.14. EFFECT OF ENZALUTAMIDE MDV3100 ON PARENTAL C4-2 AND ENZALUTAMIDE MDV3100 RESISTANT C4-2 CELLS VIABILITY. 35
4.15. GRT SUPPRESS PROLIFERATION AND INDUCE APOPTOSIS IN MDV3100R. 35
4.16. THE PROTEIN EXPRESSION OF C4-2 MDV3100R 36
4.17. GRT DECREASE THE MDV3100R COLONY FORMATION 36
5. DISCUSSION AND FUTURE DIRECTION 37
6. FIGURES AND FIGURE LEGENDS 44
6.1. FIGURE 1. 44
6.2. FIGURE 2. 45
6.3. FIGURE 3. 46
6.4. FIGURE 4. 48
6.5. FIGURE 5. 50
6.6. FIGURE 6. 51
6.7. FIGURE 7. 53
6.8. FIGURE 8. 54
6.9. FIGURE 9. 55
6.10. FIGURE 10. 56
6.11. FIGURE 11. 58
6.12. FIGURE 12. 60
6.13. FIGURE 13. 61
6.14. FIGURE 14. 62
6.15. FIGURE 15. 63
6.16. FIGURE 16 64
6.17. FIGURE 17. 65
6.18. FIGURE 18 66
6.19. FIGURE 19. 68
6.20. FIGURE 20. 69
6.21. FIGURE 21 71
6.22. FIGURE 22. 72
6.23. FIGURE 23. 73
6.24. FIGURE 24. 74
6.25 FIGURE 25. 75
6.26 FIGURE 26. 76
6.27 FIGURE 27. 77
6.28 FIGURE 28. 78
6.29 FIGURE 29. 79
6.30 FIGURE 30. 80
6.31 FIGURE 31. 81
6.32 FIGURE 32. 82
7. REFERENCES 83
8. TABLE 93
8.1. TABLE 1. 93
8.2. TABLE 2. 96
8.3. TABLE 3. 99
9. APPENDIX 101
9.1. PROSTATE CANCER METASTATIC CASCADE. 101
9.2. HIGH-THROUGHPUT MICRO-WESTERN ARRAYS PROFILE. 102
9.3. HIPPO PATHWAY′S SIGNAL TRANSMISSION CASCADE AND ITS FUNCTION REGULATION 103
9.4. APOPTOSIS SIGNALING TRANSDUCTION 104
9.5. CELL CYCLE 105
9.6. PROCESS OF AUTOPHAGY 106
9.7. ROOIBOS ENRICH COMPOUNDS 107
9.8. ORAL GRT MICE WEIGHT RECORD 108
參考文獻 1. Ajuwon, O.R., Oguntibeju, O.O., and Marnewick, J.L. (2014). Amelioration of lipopolysaccharide-induced liver injury by aqueous rooibos (Aspalathus linearis) extract via inhibition of pro-inflammatory cytokines and oxidative stress. BMC Complement Altern Med 14, 392.
2. Antonarakis, E.S., Lu, C., Wang, H., Luber, B., Nakazawa, M., Roeser, J.C., Chen, Y., Mohammad, T.A., Chen, Y., Fedor, H.L., et al. (2014). AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 371, 1028-1038.
3. Armstrong, C.M., and Gao, A.C. (2015). Drug resistance in castration resistant prostate cancer: resistance mechanisms and emerging treatment strategies. Am J Clin Exp Urol 3, 64-76.
4. Baba, H., Ohtsuka, Y., Haruna, H., Lee, T., Nagata, S., Maeda, M., Yamashiro, Y., and Shimizu, T. (2009). Studies of anti-inflammatory effects of Rooibos tea in rats. Pediatr Int 51, 700-704.
5. Bai, J.W., Li, Y.C., and Zhang, G.J. (2017). Cell cycle regulation and anticancer drug discovery. Cancer Biol Med 14, 348-362.
6. Bedolla, R., Prihoda, T.J., Kreisberg, J.I., Malik, S.N., Krishnegowda, N.K., Troyer, D.A., and Ghosh, P.M. (2007). Determining risk of biochemical recurrence in prostate cancer by immunohistochemical detection of PTEN expression and AKT activation. Clin Cancer Res 13, 3860-3867.
7. Beltran-Debon, R., Rull, A., Rodriguez-Sanabria, F., Iswaldi, I., Herranz-Lopez, M., Aragones, G., Camps, J., Alonso-Villaverde, C., Menendez, J.A., Micol, V., et al. (2011). Continuous administration of polyphenols from aqueous rooibos (Aspalathus linearis) extract ameliorates dietary-induced metabolic disturbances in hyperlipidemic mice. Phytomedicine 18, 414-424.
8. Bokobza, S.M., Ye, L., Kynaston, H.G., and Jiang, W.G. (2010). Growth and differentiation factor-9 promotes adhesive and motile capacity of prostate cancer cells by up-regulating FAK and Paxillin via Smad dependent pathway. Oncol Rep 24, 1653-1659.
9. Bolla, M., Henry, A., Mason, M., and Wiegel, T. (2019). The role of radiotherapy in localised and locally advanced prostate cancer. Asian J Urol 6, 153-161.
10. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68, 394-424.
11. Cantley, L.C., and Neel, B.G. (1999). New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A 96, 4240-4245.
12. Cao, C., Subhawong, T., Albert, J.M., Kim, K.W., Geng, L., Sekhar, K.R., Gi, Y.J., and Lu, B. (2006). Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Res 66, 10040-10047.
13. Cappellini, M.D., and Fiorelli, G. (2008). Gluclose-6-phosphate dehydrogenase deficiency. Lancet 371, 64-74.
14. Chau, B.N., Cheng, E.H., Kerr, D.A., and Hardwick, J.M. (2000). Aven, a novel inhibitor of caspase activation, binds Bcl-xL and Apaf-1. Mol Cell 6, 31-40.
15. Cheng, T.S., Chen, W.C., Lin, Y.Y., Tsai, C.H., Liao, C.I., Shyu, H.Y., Ko, C.J., Tzeng, S.F., Huang, C.Y., Yang, P.C., et al. (2013). Curcumin-targeting pericellular serine protease matriptase role in suppression of prostate cancer cell invasion, tumor growth, and metastasis. Cancer Prev Res (Phila) 6, 495-505.
16. Chuu, C.P., Chen, R.Y., Kokontis, J.M., Hiipakka, R.A., and Liao, S. (2009). Suppression of androgen receptor signaling and prostate specific antigen expression by (-)-epigallocatechin-3-gallate in different progression stages of LNCaP prostate cancer cells. Cancer Lett 275, 86-92.
17. Chuu, C.P., Kokontis, J.M., Hiipakka, R.A., Fukuchi, J., Lin, H.P., Lin, C.Y., Huo, C., and Su, L.C. (2011a). Androgens as therapy for androgen receptor-positive castration-resistant prostate cancer. J Biomed Sci 18, 63.
18. Chuu, C.P., Kokontis, J.M., Hiipakka, R.A., Fukuchi, J., Lin, H.P., Lin, C.Y., Huo, C., Su, L.C., and Liao, S. (2011b). Androgen suppresses proliferation of castration-resistant LNCaP 104-R2 prostate cancer cells through androgen receptor, Skp2, and c-Myc. Cancer Sci 102, 2022-2028.
19. Chuu, C.P., Lin, H.P., Ciaccio, M.F., Kokontis, J.M., Hause, R.J., Hiipakka, R.A., Liao, S.S., and Jones, R.B. (2012). Caffeic Acid Phenethyl Ester Suppresses the Proliferation of Human Prostate Cancer Cells through Inhibition of p70S6K and AKT Signaling Networks. Cancer Prev Res 5, 788-797.
20. Ciaccio, M.F., Wagner, J.P., Chuu, C.P., Lauffenburger, D.A., and Jones, R.B. (2010). Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nat Methods 7, 148-U195.
21. Davies, A.H., Beltran, H., and Zoubeidi, A. (2018). Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat Rev Urol 15, 271-286.
22. De Beer, D., Tobin, J., Walczak, B., Van Der Rijst, M., and Joubert, E. (2019). Phenolic composition of rooibos changes during simulated fermentation: Effect of endogenous enzymes and fermentation temperature on reaction kinetics. Food Res Int 121, 185-196.
23. de Bono, J.S., Logothetis, C.J., Molina, A., Fizazi, K., North, S., Chu, L., Chi, K.N., Jones, R.J., Goodman, O.B., Jr., Saad, F., et al. (2011). Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 364, 1995-2005.
24. de Groot, A.E., Roy, S., Brown, J.S., Pienta, K.J., and Amend, S.R. (2017). Revisiting Seed and Soil: Examining the Primary Tumor and Cancer Cell Foraging in Metastasis. Mol Cancer Res 15, 361-370.
25. Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G.D., Mitchison, T.J., Moskowitz, M.A., and Yuan, J. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1, 112-119.
26. Diallo, A., Beye, A.C., Doyle, T.B., Park, E., and Maaza, M. (2015). Green synthesis of Co3O4 nanoparticles via Aspalathus linearis: Physical properties. Green Chem Lett Rev 8, 30-36.
27. Dong, L., Zieren, R.C., Xue, W., de Reijke, T.M., and Pienta, K.J. (2019). Metastatic prostate cancer remains incurable, why? Asian J Urol 6, 26-41.
28. E. Joubert, D.d.B. (2011). Rooibos (Aspalathus linearis) beyond the farm gate: From herbal tea to potential phytopharmaceutical. South African Journal of Botany 77, 869-886.
29. Elizabeth Joubert, H.S. (2006). Production and quality aspects of rooibos tea and related products. A review. Journal of Applied Botany and Food Quality 80, 138-144.
30. Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicol Pathol 35, 495-516.
31. Enserink, J.M., and Kolodner, R.D. (2010). An overview of Cdk1-controlled targets and processes. Cell Div 5, 11.
32. Fan, T.J., Han, L.H., Cong, R.S., and Liang, J. (2005). Caspase family proteases and apoptosis. Acta Bioch Bioph Sin 37, 719-727.
33. Gilligan, T., and Kantoff, P.W. (2002). Chemotherapy for prostate cancer. Urology 60, 94-100; discussion 100.
34. Gottlob, K., Majewski, N., Kennedy, S., Kandel, E., Robey, R.B., and Hay, N. (2001). Inhibition of early apoptotic events by AKT/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Gene Dev 15, 1406-1418.
35. Hagel, M., George, E.L., Kim, A., Tamimi, R., Opitz, S.L., Turner, C.E., Imamoto, A., and Thomas, S.M. (2002). The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol Cell Biol 22, 901-915.
36. Hansen, M., Rubinsztein, D.C., and Walker, D.W. (2018). Autophagy as a promoter of longevity: insights from model organisms (vol 19, pg 579, 2018). Nat Rev Mol Cell Bio 19, 611-611.
37. Hao, Y., Chun, A., Cheung, K., Rashidi, B., and Yang, X. (2008). Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem 283, 5496-5509.
38. Harvey, K., and Tapon, N. (2007). The Salvador-Warts-Hippo pathway - an emerging tumour-suppressor network. Nat Rev Cancer 7, 182-191.
39. Hellerstedt, B.A., and Pienta, K.J. (2002). The current state of hormonal therapy for prostate cancer. CA: a cancer journal for clinicians 52, 154-179.
40. Hong, I.S., Lee, H.Y., and Kim, H.P. (2014). Anti-oxidative effects of Rooibos tea (Aspalathus linearis) on immobilization-induced oxidative stress in rat brain. PLoS One 9, e87061.
41. Huang, J.B., Wu, S., Barrera, J., Matthews, K., and Pan, D.J. (2005). The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122, 421-434.
42. Huang, S.F., Kim, S.J., Lee, A.T., Karashima, T., Bucana, C., Kedar, D., Sweeney, P., Mian, B., Fan, D., Shepherd, D., et al. (2002). Inhibition of growth and metastasis of orthotopic human prostate cancer in athymic mice by combination therapy with pegylated interferon-alpha-2b and docetaxel. Cancer Res 62, 5720-5726.
43. Huang, S.H., Tseng, J.C., Lin, C.Y., Kuo, Y.Y., Wang, B.J., Kao, Y.H., Muller, C.J.F., Joubert, E., and Chuu, C.P. (2019). Rooibos suppresses proliferation of castration-resistant prostate cancer cells via inhibition of AKT signaling. Phytomedicine 64, 153068.
44. Huggins, C., Scott, W.W., and Heinen, J.H. (1942). CHEMICAL COMPOSITION OF HUMAN SEMEN AND OF THE SECRETIONS OF THE PROSTATE AND SEMINAL VESICLES. American Journal of Physiology-Legacy Content 136, 467-473.
45. Huo, C., Kao, Y.H., and Chuu, C.P. (2015). Androgen receptor inhibits epithelial-mesenchymal transition, migration, and invasion of PC-3 prostate cancer cells. Cancer Lett 369, 103-111.
46. Hussain, M., Fizazi, K., Saad, F., Rathenborg, P., Shore, N., Ferreira, U., Ivashchenko, P., Demirhan, E., Modelska, K., Phung, et al. (2018). Enzalutamide in Men with Nonmetastatic, Castration-Resistant Prostate Cancer. N Engl J Med 378, 2465-2474.
47. Igney, F.H., and Krammer, P.H. (2002). Death and anti-death: Tumour resistance to apoptosis. Nat Rev Cancer 2, 277-288.
48. Johnson, R., Beer, D., Dludla, P.V., Ferreira, D., Muller, C.J.F., and Joubert, E. (2018). Aspalathin from rooibos (Aspalathus linearis): A bioactive C-glucosyl dihydrochalcone with potential to target the metabolic syndrome. Planta Med 84, 568-583.
49. Joubert, E., and de Beer, D. (2011). Rooibos (Aspalathus linearis) beyond the farm gate: From herbal tea to potential phytopharmaceutical. S Afr J Bot 77, 869-886.
50. Joubert, E., Gelderblom, W.C., Louw, A., and de Beer, D. (2008). South African herbal teas: Aspalathus linearis, Cyclopia spp. and Athrixia phylicoides--a review. J Ethnopharmacol 119, 376-412.
51. Kamakura, R., Son, M.J., de Beer, D., Joubert, E., Miura, Y., and Yagasaki, K. (2014). Antidiabetic effect of green rooibos (Aspalathus linearis) extract in cultured cells and type 2 diabetic model KK-A mice. Cytotechnology.
52. Karantanos, T., Corn, P.G., and Thompson, T.C. (2013). Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 32, 5501-5511.
53. Kawano, A., Nakamura, H., Hata, S., Minakawa, M., Miura, Y., and Yagasaki, K. (2009). Hypoglycemic effect of aspalathin, a rooibos tea component from Aspalathus linearis, in type 2 diabetic model db/db mice. Phytomedicine 16, 437-443.
54. Kerr, J.F.R., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis - Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics. Brit J Cancer 26, 239-+.
55. Killian, P.H., Kronski, E., Michalik, K.M., Barbieri, O., Astigiano, S., Sommerhoff, C.P., Pfeffer, U., Nerlich, A.G., and Bachmeier, B.E. (2012). Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and -2. Carcinogenesis 33, 2507-2519.
56. Kokontis, J.M., Hay, N., and Liao, S. (1998). Progression of LNCaP prostate tumor cells during androgen deprivation: hormone-independent growth, repression of proliferation by androgen, and role for p27Kip1 in androgen-induced cell cycle arrest. Mol Endocrinol 12, 941-953.
57. Kokontis, J.M., Hsu, S., Chuu, C.P., Dang, M., Fukuchi, J., Hiipakka, R.A., and Liao, S. (2005). Role of androgen receptor in the progression of human prostate tumor cells to androgen independence and insensitivity. Prostate 65, 287-298.
58. Koo, K.C., Park, S.U., Kim, K.H., Rha, K.H., Hong, S.J., Yang, S.C., and Chung, B.H. (2015). Prognostic impacts of metastatic site and pain on progression to castrate resistance and mortality in patients with metastatic prostate cancer. Yonsei Med J 56, 1206-1212.
59. Ku, S.K., Kwak, S., Kim, Y., and Bae, J.S. (2015). Aspalathin and Nothofagin from Rooibos (Aspalathus linearis) inhibits high glucose-induced inflammation in vitro and in vivo. Inflammation 38, 445-455.
60. Le, X.F., Mao, W.Q., He, G.A., Claret, F.X., Xia, W.Y., Ahmed, A.A., Hung, M.C., Siddik, Z.H., and Bast, R.C. (2011). The Role of p27(Kip1) in Dasatinib-Enhanced Paclitaxel Cytotoxicity in Human Ovarian Cancer Cells. Jnci-J Natl Cancer I 103, 1403-1422.
61. Lee, W., and Bae, J.S. (2015a). Anti-inflammatory effects of aspalathin and nothofagin from rooibos (Aspalathus linearis) in vitro and in vivo. Inflammation 38, 1502-1516.
62. Lee, W., and Bae, J.S. (2015b). Anti-inflammatory Effects of Aspalathin and Nothofagin from Rooibos (Aspalathus linearis) In Vitro and In Vivo. Inflammation.
63. Levine, B., and Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell 132, 27-42.
64. Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S.I., Puc, J., Miliaresis, C., Rodgers, L., McCombie, R., et al. (1997). PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943-1947.
65. Li, Q., Li, S.X., Mana-Capelli, S., Flach, R.J.R., Danai, L.V., Amcheslavsky, A., Nie, Y.C., Kaneko, S., Yao, X.H., Chen, X.C., et al. (2014). The Conserved Misshapen-Warts-Yorkie Pathway Acts in Enteroblasts to Regulate Intestinal Stem Cells in Drosophila. Dev Cell 31, 291-304.
66. Lin, H.P., Kuo, L.K., and Chuu, C.P. (2011). Combined Treatment of Curcumin and Small Molecule Inhibitors Suppresses Proliferation of A549 and H1299 Human Non-Small-Cell Lung Cancer Cells. Phytother Res 26, 122-126.
67. Liu, H.R., Du, S.Y., Lei, T.T., Wang, H.L., He, X., Tong, R.S., and Wang, Y. (2018). Multifaceted regulation and functions of YAP/TAZ in tumors. Oncol Rep 40, 16-28.
68. Liu, X.S., Yang, J., and Wang, X.D. (1997). bcl2 prevents apoptosis by blocking the release of cytochrome c from mitochondria. Faseb J 11, A1239-A1239.
69. Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., Abraham, J., Adair, T., Aggarwal, R., Ahn, S.Y., et al. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2095-2128.
70. Malumbres, M., and Barbacid, M. (2009). Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9, 153-166.
71. Marnewick, J., Joubert, E., Joseph, S., Swanevelder, S., Swart, P., and Gelderblom, W. (2005). Inhibition of tumour promotion in mouse skin by extracts of rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia), unique South African herbal teas. Cancer Lett 224, 193-202.
72. Marnewick, J.L., Rautenbach, F., Venter, I., Neethling, H., Blackhurst, D.M., Wolmarans, P., and Macharia, M. (2011). Effects of rooibos (Aspalathus linearis) on oxidative stress and biochemical parameters in adults at risk for cardiovascular disease. J Ethnopharmacol 133, 46-52.
73. Marnewick, J.L., van der Westhuizen, F.H., Joubert, E., Swanevelder, S., Swart, P., and Gelderblom, W.C. (2009). Chemoprotective properties of rooibos (Aspalathus linearis), honeybush (Cyclopia intermedia) herbal and green and black (Camellia sinensis) teas against cancer promotion induced by fumonisin B1 in rat liver. Food Chem Toxicol 47, 220-229.
74. Matsui, Y., Takagi, H., Qu, X., Abdellatif, M., Sakoda, H., Asano, T., Levine, B., and Sadoshima, J. (2007). Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100, 914-922.
75. Mikami, N.T., J; Sato, A; Narasada, A; Shigeta, M; Kato, M; Hata, S; Hitomi, E. (2015). Green rooibos extract from Aspalathus linearis, and its component, aspalathin, suppress elevation of blood glucose levels in mice and inhibit α-amylase and α-glucosidase activities in vitro. Food Sci Technol Res 21, 231-240.
76. Muller, C.J., Joubert, E., de Beer, D., Sanderson, M., Malherbe, C.J., Fey, S.J., and Louw, J. (2012). Acute assessment of an aspalathin-enriched green rooibos (Aspalathus linearis) extract with hypoglycemic potential. Phytomedicine 20, 32-39.
77. Muller, C.J.F., Malherbe, C.J., Chellan, N., Yagasaki, K., Miura, Y., and Joubert, E. (2018). Potential of rooibos, its major C-glucosyl flavonoids, and Z-2-(beta-D-glucopyranosyloxy)-3-phenylpropenoic acid in prevention of metabolic syndrome. Crit Rev Food Sci Nutr 58, 227-246.
78. Pan, D. (2007). Hippo signaling in organ size control. Genes Dev 21, 886-897.
79. Pankiv, S., Alemu, E.A., Brech, A., Bruun, J.A., Lamark, T., Overvatn, A., Bjorkoy, G., and Johansen, T. (2010). FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J Cell Biol 188, 253-269.
80. Patel, O., Muller, C., Joubert, E., Louw, J., Rosenkranz, B., and Awortwe, C. (2016a). Inhibitory interactions of Aspalathus linearis (rooibos) extracts and compounds, aspalathin and Z-2-(b-D-glucopyranosyloxy)-3-phenylpropenoic acid, on cytochromes metabolizing hypoglycemic and hypolipidemic drugs. Molecules 21, pii: E1515.
81. Patel, O., Muller, C., Joubert, E., Louw, J., Rosenkranz, B., and Awortwe, C. (2016b). Inhibitory Interactions of Aspalathus linearis (Rooibos) Extracts and Compounds, Aspalathin and Z-2-(beta-D-Glucopyranosyloxy)-3-phenylpropenoic Acid, on Cytochromes Metabolizing Hypoglycemic and Hypolipidemic Drugs. Molecules 21.
82. Petrylak, D.P., Tangen, C.M., Hussain, M.H., Lara, P.N., Jr., Jones, J.A., Taplin, M.E., Burch, P.A., Berry, D., Moinpour, C., Kohli, M., et al. (2004). Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351, 1513-1520.
83. Ploussard, G., Terry, S., Maille, P., Allory, Y., Sirab, N., Kheuang, L., Soyeux, P., Nicolaiew, N., Coppolani, E., Paule, B., et al. (2010). Class III beta-tubulin expression predicts prostate tumor aggressiveness and patient response to docetaxel-based chemotherapy. Cancer Res 70, 9253-9264.
84. Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A., Rosen, J., Eskelinen, E.L., Mizushima, N., Ohsumi, Y., et al. (2003). Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112, 1809-1820.
85. Roca, H., Varsos, Z., and Pienta, K.J. (2008). CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKT-dependent survivin up-regulation. J Biol Chem 283, 25057-25073.
86. Rosenfeldt, M.T., O′Prey, J., Morton, J.P., Nixon, C., MacKay, G., Mrowinska, A., Au, A., Rai, T.S., Zheng, L., Ridgway, R., et al. (2013). p53 status determines the role of autophagy in pancreatic tumour development. Nature 504, 296-300.
87. Sanderson, M., Mazibuko, S.E., Joubert, E., de Beer, D., Johnson, R., Pheiffer, C., Louw, J., and Muller, C.J. (2014). Effects of fermented rooibos (Aspalathus linearis) on adipocyte differentiation. Phytomedicine 21, 109-117.
88. Sarker, D., Reid, A.H., Yap, T.A., and de Bono, J.S. (2009). Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res 15, 4799-4805.
89. Schloms, L., Smith, C., Storbeck, K.H., Marnewick, J.L., Swart, P., and Swart, A.C. (2014). Rooibos influences glucocorticoid levels and steroid ratios in vivo and in vitro: a natural approach in the management of stress and metabolic disorders? Mol Nutr Food Res 58, 537-549.
90. Schroder, F.H., Hermanek, P., Denis, L., Fair, W.R., Gospodarowicz, M.K., and Pavonemacaluso, M. (1992). The Tnm Classification of Prostate-Cancer. Prostate, 129-138.
91. Scobioala, S., Kittel, C., Elsayad, K., Kroeger, K., Oertel, M., Samhouri, L., Haverkamp, U., and Eich, H.T. (2019). A treatment planning study comparing IMRT techniques and cyber knife for stereotactic body radiotherapy of low-risk prostate carcinoma. Radiat Oncol 14.
92. Sen, A., De Castro, I., Defranco, D.B., Deng, F.M., Melamed, J., Kapur, P., Raj, G.V., Rossi, R., and Hammes, S.R. (2012). Paxillin mediates extranuclear and intranuclear signaling in prostate cancer proliferation. J Clin Invest 122, 2469-2481.
93. Siegel, R.L., Miller, K.D., and Jemal, A. (2020). Cancer statistics, 2020. CA Cancer J Clin 70, 7-30.
94. Singh, R., Xiang, Y., Wang, Y., Baikati, K., Cuervo, A.M., Luu, Y.K., Tang, Y., Pessin, J.E., Schwartz, G.J., and Czaja, M.J. (2009). Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 119, 3329-3339.
95. Sissing, L., Marnewick, J., de Kock, M., Swanevelder, S., Joubert, E., and Gelderblom, W. (2011). Modulating effects of rooibos and honeybush herbal teas on the development of esophageal papillomas in rats. Nutr Cancer 63, 600-610.
96. Son, M.J., Minakawa, M., Miura, Y., and Yagasaki, K. (2013). Aspalathin improves hyperglycemia and glucose intolerance in obese diabetic ob/ob mice. Eur J Nutr 52, 1607-1619.
97. Sramkoski, R.M., Pretlow, T.G., 2nd, Giaconia, J.M., Pretlow, T.P., Schwartz, S., Sy, M.S., Marengo, S.R., Rhim, J.S., Zhang, D., and Jacobberger, J.W. (1999). A new human prostate carcinoma cell line, 22Rv1. In Vitro Cell Dev Biol Anim 35, 403-409.
98. Strohecker, A.M., Guo, J.Y., Karsli-Uzunbas, G., Price, S.M., Chen, G.J., Mathew, R., McMahon, M., and White, E. (2013). Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov 3, 1272-1285.
99. Tang, S.N., Singh, C., Nall, D., Meeker, D., Shankar, S., and Srivastava, R.K. (2010). The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition. J Mol Signal 5, 14.
100. Tannock, I.F., de Wit, R., Berry, W.R., Horti, J., Pluzanska, A., Chi, K.N., Oudard, S., Theodore, C., James, N.D., Turesson, I., et al. (2004). Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351, 1502-1512.
101. Tseng, J.C., Lin, C.Y., Su, L.C., Fu, H.H., Yang, S.D., and Chuu, C.P. (2016). CAPE suppresses migration and invasion of prostate cancer cells via activation of non-canonical Wnt signaling. Oncotarget 7, 38010-38024.
102. Ulicna, O., Vancova, O., Bozek, P., Carsky, J., Sebekova, K., Boor, P., Nakano, M., and Greksak, M. (2006). Rooibos tea (Aspalathus linearis) partially prevents oxidative stress in streptozotocin-induced diabetic rats. Physiol Res 55, 157-164.
103. Vermes, I., Haanen, C., Steffensnakken, H., and Reutelingsperger, C. (1995). A Novel Assay for Apoptosis - Flow Cytometric Detection of Phosphatidylserine Expression on Early Apoptotic Cells Using Fluorescein-Labeled Annexin-V. J Immunol Methods 184, 39-51.
104. Vermeulen, K., Van Bockstaele, D.R., and Berneman, Z.N. (2003). The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Proliferat 36, 131-149.
105. Watanabe, M., Hitomi, M., van der Wee, K., Rothenberg, F., Fisher, S.A., Zucker, R., Svoboda, K.K.H., Goldsmith, E.C., Heiskanen, K.M., and Nieminen, A.L. (2002). The pros and cons of apoptosis assays for use in the study of cells, tissues, and organs. Microsc Microanal 8, 375-391.
106. Yang, H.C., Wu, Y.H., Yen, W.C., Liu, H.Y., Hwang, T.L., Stern, A., and Chiu, D.T. (2019). The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer. Cells-Basel 8.
107. Yun, C.W., and Lee, S.H. (2018). The Roles of Autophagy in Cancer. Int J Mol Sci 19.
108. Zanconato, F., Cordenonsi, M., and Piccolo, S. (2019). YAP and TAZ: a signalling hub of the tumour microenvironment. Nat Rev Cancer 19, 454-464.
109. Zeng, Q., and Hong, W. (2008). The emerging role of the hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell 13, 188-192.
110. Zhang, L., Yang, S., Chen, X., Stauffer, S., Yu, F., Lele, S.M., Fu, K., Datta, K., Palermo, N., Chen, Y., et al. (2015a). The hippo pathway effector YAP regulates motility, invasion, and castration-resistant growth of prostate cancer cells. Mol Cell Biol 35, 1350-1362.
111. Zhang, L., Yang, S.P., Chen, X.C., Stauffer, S., Yu, F., Lele, S.M., Fu, K., Datta, K., Palermo, N., Chen, Y.H., et al. (2015b). The Hippo Pathway Effector YAP Regulates Motility, Invasion, and Castration-Resistant Growth of Prostate Cancer Cells. Mol Cell Biol 35, 1350-1362.
112. Zhang, X., Wen, Z., and Mi, X. (2014). Expression and anti-apoptotic function of TRAF4 in human breast cancer MCF-7 cells. Oncol Lett 7, 411-414.
113. Zhao, B., Wei, X., Li, W., Udan, R.S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu, J., Li, L., et al. (2007). Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21, 2747-2761.
114. Zhao, B., Ye, X., Yu, J.D., Li, L., Li, W.Q., Li, S.M., Yu, J.J., Lin, J.D., Wang, C.Y., Chinnaiyan, A.M., et al. (2008). TEAD mediates YAP-dependent gene induction and growth control. Gene Dev 22, 1962-1971.
115. Zheng, Q.S., Chen, S.H., Wu, Y.P., Chen, H.J., Chen, H., Wei, Y., Li, X.D., Huang, J.B., Xue, X.Y., and Xu, N. (2018). Increased Paxillin expression in prostate cancer is associated with advanced pathological features, lymph node metastases and biochemical recurrence. J Cancer 9, 959-967.
指導教授 褚志斌 高永旭(Chih-Pin Chuu Yung-Hsi Kao) 審核日期 2020-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明