博碩士論文 102295001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.224.149.242
姓名 王添璟(Tien-Ching Wang)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱
(Increased Cognitive Load with Spatial Cueing Task Augments the P300 Amplitude Differences in EEG-based CIT Experiments)
相關論文
★ 以毛筆筆刷、手掌觸摸、和指尖輕點的觸覺刺激探討情動觸摸所引 發的theta 頻段腦波強度變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於我們的認知資源是有限的,增加認知負荷可以增強說謊和說實話認知過程的差異,從而提高鑑識測謊測試的準確性。本研究旨在探討在P300的隱匿犯罪相關知識(CIT)測謊測試中,增加認知負荷是否會提高區分每位受測者準確性。在實驗1中,我們進行了模擬犯罪CIT事件相關電位(ERP)實驗,並以P300振幅作為區分有犯罪相關知識刺激和無犯罪相關知識敇激的指標。在實驗2中,我們在CIT測謊測試中增加了空間提示任務作業,透過實驗操弄受測者的注意力增加認知負荷,加大犯罪相關知識敇激和無犯罪相關知識刺激之間在CIT測謊測試的P300振幅差異,進一步提高區分的準確性。結果顯示,納入空間提示作業表現出顯著的三因子變異數分析交互作用(群組x空間提示任務作業x犯罪相關知識刺激,p < .05, ηP2 = .39),並提高了區分每位受測者的準確性。因此,加入認知負荷的空間提示任務作業P300 CIT測謊測試(實驗2)證明比典型的P300 CIT 測謊測試(實驗1)更有效。
摘要(英) Since our cognitive resources are limited, increasing cognitive load can augment the differences in the cognitive processes of deception or telling a truth and, in turn, increase the accuracy of detection of deception. This study aimed to explore whether increasing cognitive load enhances the accuracy in classifying the participants into the group with or without knowledge about a mock crime in a P300-based concealed information test (CIT). Two experiments were conducted in this study: In Experiment 1, we conducted a mock crime CIT event-related potential (ERP) experiment and computed the P300 amplitudes as an index for differentiating knowledgeable and unknowledgeable participants. In Experiment 2, spatial cueing was blended with the traditional P300-based CIT task to increase the cognitive load by manipulating participants’ attention and, in turn, maximize the P300 amplitude differences between probe and irrelevant conditions in a CIT to further improve the accuracy of the differentiation. Results indicated that incorporating spatial cueing exhibited a significant three-way interaction effect (group x cueing x stimulus, p < .05, ηP2 = .39) and improved the accuracy of differentiating the knowledgeable participants from the unknowledgeable ones. The CIT with spatial cueing (Experiment 2) was thus proved more effective than the typical P300-based CIT examination (Experiment 1).
關鍵字(中) ★ 鑑識測謊測試
★ 隱匿犯罪相關知識測試
★ 空間提示任務作業
★ P300
★ 認知負荷
關鍵字(英) ★ forensic psychophysiology
★ concealed information test
★ spatial cueing task
★ P300
★ cognitive load
論文目次 TABLE OF CONTENT
摘要 i
ABSTRACT iii
TABLE OF CONTENT v
LIST OF FIGURES vii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 The psychophysiology of deception detection 1
1.2 P300-based concealed information tests 11
1.3 The increasing cognitive load on deception 21
1.4 The bootstrap method for CIT 27
1.5 Research Aims 31
Chapter 2 Methods 35
2.1 Experiment 1 35
2.1.1 Participants 35
2.1.2 Experimental Procedures 36
2.1.3 Data Acquisition and Analysis 38
2.2 Experiment 2 41
2.2.1 Participants 42
2.2.2 Experimental Procedures 42
2.2.3 Data Acquisition and Analysis 44
Chapter 3 Results 45
3.1 Experiment 1 45
3.1.1 Behavioral Data 45
3.1.2 ERP Data 46
3.2 Experiment 2 51
3.2.1 Behavioral Data 51
3.2.2 ERP Data 53
Chapter 4 General Discussion 57
4.1 The increased cognitive load effect on the P300-based CIT 57
4.2 The P300-base CIT in a Taiwan population 62
4.3 Limitations and future works 66
References 71

參考文獻 Abernethy, B. (1988). Dual-task methodology and motor skills research: some applications and methodological constraints. Journal of human movement studies, 14(3), 101-132.
Abootalebi, V., Moradi, M. H., & Khalilzadeh, M. A. (2009). A new approach for EEG feature extraction in P300-based lie detection. Computer Methods and Programs in Biomedicine, 94(1), 48-57. https://doi.org/10.1016/j.cmpb.2008.10.001
Allen, J. J., Iacono, W. G., & Danielson, K. D. (1992). The Identification of Concealed Memories Using the Event-Related Potential and Implicit Behavioral Measures: A Methodology for Prediction in the Face of Individual Differences. Psychophysiology, 29(5), 504-522. https://doi.org/10.1111/j.1469-8986.1992.tb02024.x
Ambach, W., Bursch, S., Stark, R., & Vaitl, D. (2010). A Concealed Information Test with multimodal measurement. International Journal of Psychophysiology, 75(3), 258-267. https://doi.org/10.1016/j.ijpsycho.2009.12.007
Ball, R., Shu, C., Xi, P., Rioux, M., Luximon, Y., & Molenbroek, J. (2010). A comparison between Chinese and Caucasian head shapes. Applied Ergonomics, 41(6), 832-839. https://doi.org/10.1016/j.apergo.2010.02.002
Başar-Eroglu, C., Başar, E., Demiralp, T., & Schürmann, M. (1992). P300-response: possible psychophysiological correlates in delta and theta frequency channels. A review. International Journal of Psychophysiology, 13(2), 161-179.
Başar-Eroglu, C., Demiralp, T., Schürmann, M., & Başar, E. (2001). Topological distribution of oddball ‘P300’ responses. International Journal of Psychophysiology, 39(2-3), 213-220. https://doi.org/10.1016/s0167-8760(00)00142-2
Ben-Shakhar, G. (2012). Current research and potential applications of the concealed information test: an overview. Frontiers in Psychology, 3, 342. https://doi.org/10.3389/fpsyg.2012.00342
Birbaumer, N., Elbert, T., Canavan, A. G., & Rockstroh, B. (1990). Slow potentials of the cerebral cortex and behavior. Physiological Reviews, 70(1), 1-41.
Blandon-Gitlin, I., Fenn, E., Masip, J., & Yoo, A. H. (2014). Cognitive-load approaches to detect deception: searching for cognitive mechanisms. Trends in Cognitive Sciences, 18(9), 441-444. https://doi.org/10.1016/j.tics.2014.05.004
Bradley, M. M. (2009). Natural selective attention: orienting and emotion. Psychophysiology, 46(1), 1-11. https://doi.org/10.1111/j.1469-8986.2008.00702.x
Bradley, M. T., & Warfield, J. F. (1984). Innocence, information, and the guilty knowledge test in the detection of deception. Psychophysiology, 21(6), 683-689. https://doi.org/10.1111/j.1469-8986.1984.tb00257.x
Brocke, B., Tasche, K. G., & Beauducel, A. (1997). Biopsychological foundations of extraversion: Differential effort reactivity and state control. Personality and Individual Differences, 22(4), 447-458. https://doi.org/10.1016/s0191-8869(96)00226-7
Cannon, W. B. (1915). Bodily changes in pain, hunger, fear and rage. ed. Appleton & Company.
Carrion, R. E., Keenan, J. P., & Sebanz, N. (2010). A truth that′s told with bad intent: an ERP study of deception. Cognition, 114(1), 105-110. https://doi.org/10.1016/j.cognition.2009.05.014
Christ, S. E., Van Essen, D. C., Watson, J. M., Brubaker, L. E., & McDermott, K. B. (2009). The contributions of prefrontal cortex and executive control to deception: evidence from activation likelihood estimate meta-analyses. Cerebral Cortex, 19(7), 1557-1566. https://doi.org/10.1093/cercor/bhn189
Clayson, P. E., Carbine, K. A., Baldwin, S. A., & Larson, M. J. (2019). Methodological reporting behavior, sample sizes, and statistical power in studies of event-related potentials: Barriers to reproducibility and replicability. Psychophysiology, 56(11), e13437. https://doi.org/10.1111/psyp.13437
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd edn. Lawrence Erlbaum Associates.
Cui, Q., Vanman, E. J., Wei, D., Yang, W., Jia, L., & Zhang, Q. (2014). Detection of deception based on fMRI activation patterns underlying the production of a deceptive response and receiving feedback about the success of the deception after a mock murder crime. Social Cognitive and Affective Neuroscience, 9(10), 1472-1480. https://doi.org/10.1093/scan/nst134
Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. https://doi.org/10.1016/j.jneumeth.2003.10.009
Diaconis, P., & Efron, B. (1983). Computer-intensive methods in statistics. Scientific American, 248(5), 116-131.
Digiacomo, M. R., Marco-Pallares, J., Flores, A. B., & Gomez, C. M. (2008). Wavelet analysis of the EEG during the neurocognitive evaluation of invalidly cued targets. Brain Research, 1234, 94-103. https://doi.org/10.1016/j.brainres.2008.07.072
Donchin, E. (1979). Event-related brain potentials: A tool in the study of human information processing. In Evoked brain potentials and behavior (pp. 13-88). Springer.
Donchin, E., & Coles, M. G. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11(3), 357-374. https://doi.org/10.1017/S0140525X00058027
Duncan-Johnson, C. C., & Donchin, E. (1980). The relation of P300 latency to reaction time as a function of expectancy. In Progress in Brain Research (Vol. 54, pp. 717-722). Elsevier.
Duncan‐Johnson, C. C. (1981). Young psychophysiologist award address, 1980: P300 latency: a new metric of information processing. Psychophysiology, 18(3), 207-215. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8986.1981.tb03020.x?sid=nlm%3Apubmed
Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press.
Fabiani, M., Gratton, G., Karis, D., & Donchin, E. (1987). Definition, identification, and reliability of measurement of the P300 component of the event-related brain potential. Advances in psychophysiology, 2(S 1), 1-78.
Farwell, L. A. (2012). Brain fingerprinting: a comprehensive tutorial review of detection of concealed information with event-related brain potentials. Cognitive Neurodynamics, 6(2), 115-154. https://doi.org/10.1007/s11571-012-9192-2
Farwell, L. A., & Donchin, E. (1991). The truth will out: interrogative polygraphy ("lie detection") with event-related brain potentials. Psychophysiology, 28(5), 531-547. https://doi.org/10.1111/j.1469-8986.1991.tb01990.x
Farwell, L. A., & Richardson, G. M. (2022). Brain fingerprinting field study on major, terrorist crimes supports the brain fingerprinting scientific standards hypothesis: classification concealed information test with P300 and P300-MERMER succeeds; comparison CIT fails. Cognitive Neurodynamics. https://doi.org/10.1007/s11571-022-09795-1
Furedy, J. J., & Ben‐Shakhar, G. (1991). The roles of deception, intention to deceive, and motivation to avoid detection in the psychophysiological detection of guilty knowledge. Psychophysiology, 28(2), 163-171.
Gómez, C. M., Flores, A., Digiacomo, M. R., Ledesma, A., & González-Rosa, J. (2008). P3a and P3b components associated to the neurocognitive evaluation of invalidly cued targets. Neuroscience Letters, 430(2), 181-185. https://doi.org/10.1016/j.neulet.2007.10.049
Gamer, M. (2010). Does the Guilty Actions Test allow for differentiating guilty participants from informed innocents? A re-examination. International Journal of Psychophysiology, 76(1), 19-24. https://doi.org/10.1016/j.ijpsycho.2010.01.009
Gamer, M., Klimecki, O., Bauermann, T., Stoeter, P., & Vossel, G. (2012). fMRI-activation patterns in the detection of concealed information rely on memory-related effects. Social Cognitive and Affective Neuroscience, 7(5), 506-515. https://doi.org/10.1093/scan/nsp005
Ganis, G., Rosenfeld, J. P., Meixner, J., Kievit, R. A., & Schendan, H. E. (2011). Lying in the scanner: covert countermeasures disrupt deception detection by functional magnetic resonance imaging. Neuroimage, 55(1), 312-319. https://doi.org/10.1016/j.neuroimage.2010.11.025
Goldsmith, M., & Yeari, M. (2003). Modulation of object-based attention by spatial focus under endogenous and exogenous orienting. Journal of Experimental Psychology: Human Perception and Performance, 29(5), 897-918. https://doi.org/10.1037/0096-1523.29.5.897
Gould, I. C., Wolfgang, B. J., & Smith, P. L. (2007). Spatial uncertainty explains exogenous and endogenous attentional cuing effects in visual signal detection. Journal of Vision, 7(13), 4 1-17. https://doi.org/10.1167/7.13.4
Hahm, J., Ji, H. K., Jeong, J. Y., Oh, D. H., Kim, S. H., Sim, K. B., & Lee, J. H. (2009). Detection of concealed information: combining a virtual mock crime with a P300-based Guilty Knowledge Test. Cyberpsychol Behav, 12(3), 269-275. https://doi.org/10.1089/cpb.2008.0309
Halgren, E., Marinkovic, K., & Chauvel, P. (1998). Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalography and Clinical Neurophysiology, 106(2), 156-164. https://doi.org/10.1016/s0013-4694(97)00119-3
He, B., Lian, J., Spencer, K. M., Dien, J., & Donchin, E. (2001). A cortical potential imaging analysis of the P300 and novelty P3 components. Human Brain Mapping, 12(2), 120-130. https://doi.org/10.1002/1097-0193(200102)12:2<120::AID-HBM1009>3.0.CO;2-V
Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proceedings of the National Academy of Sciences, 95(3), 781-787.
Hu, X., Bergstrom, Z. M., Bodenhausen, G. V., & Rosenfeld, J. P. (2015). Suppressing Unwanted Autobiographical Memories Reduces Their Automatic Influences: Evidence From Electrophysiology and an Implicit Autobiographical Memory Test. Psychological Science, 26(7), 1098-1106. https://doi.org/10.1177/0956797615575734
Isreal, J. B., Chesney, G. L., Wickens, C. D., & Donchin, E. (1980). P300 and tracking difficulty: Evidence for multiple resources in dual‐task performance. Psychophysiology, 17(3), 259-273.
Johansson, M., & Mecklinger, A. (2003). The late posterior negativity in ERP studies of episodic memory: action monitoring and retrieval of attribute conjunctions. Biological Psychology, 64(1-2), 91-117. https://doi.org/10.1016/s0301-0511(03)00104-2
Johnson Jr, R., Pfefferbaum, A., & Kopell, B. S. (1985). P300 and long‐term memory: Latency predicts recognition performance. Psychophysiology, 22(5), 497-507.
Johnson, R. (1986). A triarchic model of P300 amplitude. Psychophysiology, 23(4), 367-384. https://doi.org/10.1111/j.1469-8986.1986.tb00649.x
Johnson, R. (1988). The amplitude of the P300 component of the event-related potential: Review and synthesis. Advances in psychophysiology, 3, 69-137.
Johnson, R., Jr. (1993). On the neural generators of the P300 component of the event‐related potential. Psychophysiology, 30(1), 90-97. https://doi.org/10.1111/j.1469-8986.1993.tb03208.x
Joyce, C. A., Gorodnitsky, I. F., & Kutas, M. (2004). Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiology, 41(2), 313-325.
Jung, T.-P., Humphries, C., Lee, T.-W., Makeig, S., McKeown, M. J., Iragui, V., & Sejnowski, T. J. (1998). Extended ICA Removes Artifacts from Electroencephalographic Recordings. Advances in Neural Information Processing Systems, 10, 894-900. https://doi.org/10.1109/IJCNN.2007.4371184
Jung, T. P., Makeig, S., Humphries, C., Lee, T.-W., Mckeown, M. J., Iragui, V., & Sejnowski, T. J. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 37(2), 163-178. https://doi.org/https://doi.org/10.1111/1469-8986.3720163
Jung, T. P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., & Sejnowski, T. J. (2000). Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clinical Neurophysiology, 111(10), 1745-1758. https://doi.org/10.1016/s1388-2457(00)00386-2
Kahneman, D. (1973). Attention and effort. Prentice-Hall.
Key, A. P. F., Dove, G. O., & Maguire, M. J. (2005). Linking brainwaves to the brain: an ERP primer. Developmental Neuropsychology, 27(2), 183-215.
Klein Selle, N., Gueta, C., Harpaz, Y., Deouell, L. Y., & Ben-Shakhar, G. (2021). Brain-based concealed memory detection is driven mainly by orientation to salient items. Cortex, 136, 41-55. https://doi.org/10.1016/j.cortex.2020.12.010
Klein Selle, N., Verschuere, B., Kindt, M., Meijer, E., & Ben-Shakhar, G. (2017). Unraveling the roles of orienting and inhibition in the Concealed Information Test. Psychophysiology, 54(4), 628-639. https://doi.org/10.1111/psyp.12825
Krapohl, D. J., McCloughan, J. B., & Senter, S. M. (2009). How to use the concealed information test. Polygraph, 38(1), 34-49.
Kubo, K., & Nittono, H. (2008). Detecting the intention to conceal the truth: An event-related potential study. Proceedings, pp, 55, 58.
Kubo, K., & Nittono, H. (2009). The role of intention to conceal in the P300-based concealed information test. Applied Psychophysiology and Biofeedback, 34(3), 227-235. https://doi.org/10.1007/s10484-009-9089-y
Kusak, G., Grune, K., Hagendorf, H., & Metz, A.-M. (2000). Updating of working memory in a running memory task: an event-related potential study. International Journal of Psychophysiology, 39(1), 51-65. https://doi.org/10.1016/s0167-8760(00)00116-1
Kutas, M., McCarthy, G., & Donchin, E. (1977). Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science, 197(4305), 792-795.
LaBerge, D. (1997). Attention, awareness, and the triangular circuit. Consciousness and Cognition, 6(2-3), 149-181. https://doi.org/10.1006/ccog.1997.0305
Lancaster, G. L. J., Vrij, A., Hope, L., & Waller, B. (2013). Sorting the Liars from the Truth Tellers: The Benefits of Asking Unanticipated Questions on Lie Detection. Applied Cognitive Psychology, 27(1), 107-114. https://doi.org/10.1002/acp.2879
Lavie, N. (2010). Attention, Distraction, and Cognitive Control Under Load. Current Directions in Psychological Science, 19(3), 143-148. https://doi.org/10.1177/0963721410370295
Lavie, N., & De Fockert, J. (2005). The role of working memory in attentional capture. Psychonomic bulletin & review, 12(4), 669-674.
Lee, H., Yoo, B. I., Han, J. W., Lee, J. J., Oh, S. Y., Lee, E. Y., . . . Kim, K. W. (2016). Construction and Validation of Brain MRI Templates from a Korean Normal Elderly Population. Psychiatry Investigation, 13(1), 135-145. https://doi.org/10.4306/pi.2016.13.1.135
Levine, T. R., Blair, J. P., & Carpenter, C. J. (2018). A critical look at meta-analytic evidence for the cognitive approach to lie detection: A re-examination of Vrij, Fisher, and Blank (2017). Legal and Criminological Psychology, 23(1), 7-19. https://doi.org/10.1111/lcrp.12115
Lukacs, G., Weiss, B., Dalos, V. D., Kilencz, T., Tudja, S., & Csifcsak, G. (2016). The first independent study on the complex trial protocol version of the P300-based concealed information test: Corroboration of previous findings and highlights on vulnerabilities. International Journal of Psychophysiology, 110, 56-65. https://doi.org/10.1016/j.ijpsycho.2016.10.010
Lykken, D. T. (1959). The GSR in the detection of guilt. Journal of Applied Psychology, 43(6), 385. https://doi.org/10.1037/h0046060
Lykken, D. T. (1960). The validity of the guilty knowledge technique: The effects of faking. Journal of Applied Psychology, 44(4), 258.
Matsuda, I., & Nittono, H. (2018). Physiological responses in the concealed information test: a selective review in the light of recognition and concealment. Detecting Concealed Information and Deception, 77-96.
Matsuda, I., Nittono, H., & Allen, J. J. (2013). Detection of concealed information by P3 and frontal EEG asymmetry. Neuroscience Letters, 537, 55-59. https://doi.org/10.1016/j.neulet.2013.01.029
Matsuda, I., Nittono, H., Hirota, A., Ogawa, T., & Takasawa, N. (2009). Event-related brain potentials during the standard autonomic-based concealed information test. International Journal of Psychophysiology, 74(1), 58-68. https://doi.org/10.1016/j.ijpsycho.2009.07.004
Matsuda, I., Nittono, H., & Ogawa, T. (2013). Identifying concealment-related responses in the concealed information test. Psychophysiology, 50(7), 617-626. https://doi.org/10.1111/psyp.12046
McCarthy, G., & Donchin, E. (1981). A metric for thought: a comparison of P300 latency and reaction time. Science, 211(4477), 77-80.
McEvoy, L. K., Smith, M. E., & Gevins, A. (1998). Dynamic cortical networks of verbal and spatial working memory: effects of memory load and task practice. Cerebral Cortex, 8(7), 563-574. https://doi.org/10.1093/cercor/8.7.563
Mecklinger, A., Rosburg, T., & Johansson, M. (2016). Reconstructing the past: The late posterior negativity (LPN) in episodic memory studies. Neuroscience and Biobehavioral Reviews, 68, 621-638. https://doi.org/10.1016/j.neubiorev.2016.06.024
Meijer, E. H., Selle, N. K., Elber, L., & Ben-Shakhar, G. (2014). Memory detection with the Concealed Information Test: a meta analysis of skin conductance, respiration, heart rate, and P300 data. Psychophysiology, 51(9), 879-904. https://doi.org/10.1111/psyp.12239
Meijer, E. H., Smulders, F. T., Merckelbach, H. L., & Wolf, A. G. (2007). The P300 is sensitive to concealed face recognition. International Journal of Psychophysiology, 66(3), 231-237. https://doi.org/10.1016/j.ijpsycho.2007.08.001
Meixner, J. B., Haynes, A., Winograd, M. R., Brown, J., & Peter Rosenfeld, J. (2009). Assigned versus random, countermeasure-like responses in the p300 based complex trial protocol for detection of deception: task demand effects. Applied Psychophysiology and Biofeedback, 34(3), 209-220. https://doi.org/10.1007/s10484-009-9091-4
Mertens, R., & Allen, J. J. (2008). The role of psychophysiology in forensic assessments: deception detection, ERPs, and virtual reality mock crime scenarios. Psychophysiology, 45(2), 286-298. https://doi.org/10.1111/j.1469-8986.2007.00615.x
Miyake, Y., & Yamahura, T. (1993). Event related potentials as an indicator of detecting information in field polygraph examinations. Polygraph, 22(2), 131-149.
Mulert, C., Pogarell, O., Juckel, G., Rujescu, D., Giegling, I., Rupp, D., . . . Hegerl, U. (2004). The neural basis of the P300 potential. Focus on the time-course of the underlying cortical generators. European Archives of Psychiatry and Clinical Neuroscience, 254(3), 190-198. https://doi.org/10.1007/s00406-004-0469-2
Myers, S. A., Zhong, M., & Guan, S. (1998). Instructor immediacy in the Chinese college classroom. Communication Studies, 49(3), 240-254. https://doi.org/10.1080/10510979809368534
Nahari, G., & Ben-Shakhar, G. (2011). Psychophysiological and behavioral measures for detecting concealed information: the role of memory for crime details. Psychophysiology, 48(6), 733-744. https://doi.org/10.1111/j.1469-8986.2010.01148.x
Nose, I., Murai, J., & Taira, M. (2009). Disclosing concealed information on the basis of cortical activations. Neuroimage, 44(4), 1380-1386. https://doi.org/10.1016/j.neuroimage.2008.11.002
O′Gorman, J. G. (1979). The orienting reflex: Novelty or significance detector? Psychophysiology, 16(3), 253-262.
Osugi, A. (2018). Field findings from the concealed information test in Japan. In Detecting Concealed Information and Deception (pp. 97-121). Elsevier.
Osugi, A., & Ohira, H. (2017). High Emotional Arousal Enables Subliminal Detection of Concealed Information. Psychology (Savannah, Ga.), 08(10), 1482-1500. https://doi.org/10.4236/psych.2017.810098
Pakkenberg, B., & Gundersen, H. J. G. (1997). Neocortical neuron number in humans: effect of sex and age. Journal of Comparative Neurology, 384(2), 312-320.
Peth, J., Sommer, T., Hebart, M. N., Vossel, G., Buchel, C., & Gamer, M. (2015). Memory detection using fMRI - does the encoding context matter? Neuroimage, 113, 164-174. https://doi.org/10.1016/j.neuroimage.2015.03.051
Podlesny, J. A. (2003). A paucity of operable case facts restricts applicability of the guilty knowledge technique in FBI criminal polygraph examinations. Forensic Science Communications, 5(3).
Polich, J. (1991). P300 in clinical applications: meaning, method, and measurement. American Journal of EEG Technology, 31(3), 201-231.
Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148. https://doi.org/10.1016/j.clinph.2007.04.019
Polich, J., & Bondurant, T. (1997). P300 sequence effects, probability, and interstimulus interval. Physiology and Behavior, 61(6), 843-849.
Pollina, D. A., Dollins, A. B., Senter, S. M., Brown, T. E., Pavlidis, I., Levine, J. A., & Ryan, A. H. (2006). Facial skin surface temperature changes during a "concealed information" test. Annals of Biomedical Engineering, 34(7), 1182-1189. https://doi.org/10.1007/s10439-006-9143-3
Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. Attention and performance X: Control of language processes, 32, 531-556.
Reid, J., Inbau, F., Williams, Co, W., & America, U. S. o. (1977). TRUTH AND DECEPTION-THE POLYGRAPH (′LIE-DETECTOR′) TECHNIQUE, 2D ED. Baltimore, MD: The Williams & Wilkins Co.
Ritter, W., Simson, R., & Vaughan Jr, H. G. (1983). Event‐related potential correlates of two stages of information processing in physical and semantic discrimination tasks. Psychophysiology, 20(2), 168-179. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8986.1983.tb03283.x?sid=nlm%3Apubmed
Rosenfeld, J. P. (1999). P300 Scalp amplitude distribution as an index of deception in a simulated cognitive deficit model. International Journal of Psychophysiology, 33(1), 3-19. https://doi.org/10.1016/s0167-8760(99)00021-5
Rosenfeld, J. P. (2018). Detecting concealed information and deception: Recent developments.
Rosenfeld, J. P., Biroschak, J. R., & Furedy, J. J. (2006). P300-based detection of concealed autobiographical versus incidentally acquired information in target and non-target paradigms. International Journal of Psychophysiology, 60(3), 251-259. https://doi.org/10.1016/j.ijpsycho.2005.06.002
Rosenfeld, J. P., Cantwell, B., Nasman, V. T., Wojdac, V., Ivanov, S., & Mazzeri, L. (1988). A modified, event-related potential-based guilty knowledge test. International Journal of Neuroscience, 42(1-2), 157-161. https://doi.org/10.3109/00207458808985770
Rosenfeld, J. P., Hu, X., Labkovsky, E., Meixner, J., & Winograd, M. R. (2013). Review of recent studies and issues regarding the P300-based complex trial protocol for detection of concealed information. International Journal of Psychophysiology, 90(2), 118-134. https://doi.org/10.1016/j.ijpsycho.2013.08.012
Rosenfeld, J. P., Labkovsky, E., Davydova, E., Ward, A., & Rosenfeld, L. (2017). Financial incentive does not affect P300 (in response to certain episodic and semantic probe stimuli) in the Complex Trial Protocol (CTP) version of the Concealed Information Test (CIT) in detection of malingering. Psychophysiology, 54(5), 764-772. https://doi.org/10.1111/psyp.12835
Rosenfeld, J. P., Nasman, V. T., Whalen, R., Cantwell, B., & Mazzeri, L. (1987). Late vertex positivity in event-related potentials as a guilty knowledge indicator: A new method of lie detection. International Journal of Neuroscience, 34(1-2), 125-129. https://doi.org/10.3109/00207458708985947
Rosenfeld, J. P., Ozsan, I., & Ward, A. C. (2017). P300 amplitude at Pz and N200/N300 latency at F3 differ between participants simulating suspect versus witness roles in a mock crime. Psychophysiology, 54(4), 640-648. https://doi.org/10.1111/psyp.12823
Rosenfeld, J. P., Soskins, M., Bosh, G., & Ryan, A. (2004). Simple, effective countermeasures to P300-based tests of detection of concealed information. Psychophysiology, 41(2), 205-219. https://doi.org/10.1111/j.1469-8986.2004.00158.x
Rosenfeld, J. P., Ward, A., Thai, M., & Labkovsky, E. (2015). Superiority of pictorial versus verbal presentation and initial exposure in the P300-based, complex trial protocol for concealed memory detection. Applied Psychophysiology and Biofeedback, 40(2), 61-73. https://doi.org/10.1007/s10484-015-9275-z
Rugg, M. D., & Curran, T. (2007). Event-related potentials and recognition memory. Trends in Cognitive Sciences, 11(6), 251-257. https://doi.org/10.1016/j.tics.2007.04.004
Sai, L., Zhou, X., Ding, X. P., Fu, G., & Sang, B. (2014). Detecting concealed information using functional near-infrared spectroscopy. Brain Topography, 27(5), 652-662. https://doi.org/10.1007/s10548-014-0352-z
Scherer, K. R., Schorr, A., & Johnstone, T. (2001). Appraisal processes in emotion: Theory, methods, research. Oxford University Press.
Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84(1), 1.
Seymour, T. L., Seifert, C. M., Shafto, M. G., & Mosmann, A. L. (2000). Using response time measures to assess "guilty knowledge". Journal of Applied Psychology, 85(1), 30-37. https://doi.org/10.1037/0021-9010.85.1.30
Shiffrin, R. M., & Schneider, W. (1984). Automatic and controlled processing revisited. Psychological Review, 91(2), 269-276. https://doi.org/10.1037/0033-295X.91.2.269
Sirevaag, E. J., Kramer, A. F., Coles, M. G., & Donchin, E. (1989). Resource reciprocity: An event-related brain potentials analysis. Acta Psychologica, 70(1), 77-97.
Sokolov, E. N. (1963). Perception and the conditioned reflex. Macmillian.
Soskins, M., Rosenfeld, J. P., & Niendam, T. (2001). Peak-to-peak measurement of P300 recorded at 0.3 Hz high pass filter settings in intraindividual diagnosis: complex vs. simple paradigms. International Journal of Psychophysiology, 40(2), 173-180. https://doi.org/10.1016/s0167-8760(00)00154-9
Spence, C. J., & Driver, J. (1994). Covert spatial orienting in audition: Exogenous and endogenous mechanisms. Journal of Experimental Psychology: Human Perception and Performance, 20(3), 555-574. https://doi.org/10.1037/0096-1523.20.3.555
Stauffer, C. C., Indermuhle, R., Troche, S. J., & Rammsayer, T. H. (2012). Extraversion and short-term memory for chromatic stimuli: an event-related potential analysis. International Journal of Psychophysiology, 86(1), 66-73. https://doi.org/10.1016/j.ijpsycho.2012.07.184
Stenberg, G. (1994). Extraversion and the P300 in a visual classification task. Personality and Individual Differences, 16(4), 543-560. https://doi.org/10.1016/0191-8869(94)90182-1
Suchotzki, K., Crombez, G., Smulders, F. T., Meijer, E., & Verschuere, B. (2015). The cognitive mechanisms underlying deception: an event-related potential study. International Journal of Psychophysiology, 95(3), 395-405. https://doi.org/10.1016/j.ijpsycho.2015.01.010
Sutton, S., Braren, M., Zubin, J., & John, E. R. (1965). Evoked-potential correlates of stimulus uncertainty. Science, 150(3700), 1187-1188. https://doi.org/10.1016/S0013-4694(97)00042-8
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257-285. https://doi.org/10.1016/0364-0213(88)90023-7
Tau, G. Z., & Peterson, B. S. (2010). Normal development of brain circuits. Neuropsychopharmacology, 35(1), 147-168. https://doi.org/10.1038/npp.2009.115
Towle, V. L., Bolaños, J., Suarez, D., Tan, K., Grzeszczuk, R., Levin, D. N., . . . Spire, J.-P. (1993). The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy. Electroencephalography and Clinical Neurophysiology, 86(1), 1-6.
Valakos, D., d′Avossa, G., Mylonas, D., Butler, J., Klein, C., & Smyrnis, N. (2020). P300 response modulation reflects breaches of non-probabilistic expectations. Scientific Reports, 10(1), 10254. https://doi.org/10.1038/s41598-020-67275-0
Verschuere, B., Crombez, G., Koster, E. H., Van Bockstaele, B., & De Clercq, A. (2007). Startling secrets: startle eye blink modulation by concealed crime information. Biological Psychology, 76(1-2), 52-60. https://doi.org/10.1016/j.biopsycho.2007.06.001
Verschuere, B., & De Houwer, J. (2011). Detecting concealed information in less than a second: Response latency-based measures. Memory detection: Theory and application of the Concealed Information Test, 46-62.
Vicianova, M. (2015). Historical Techniques of Lie Detection. Europe’s Journal of Psychology, 11(3), 522-534. https://doi.org/10.5964/ejop.v11i3.919
Visu-Petra, G., Varga, M., Miclea, M., & Visu-Petra, L. (2013). When interference helps: increasing executive load to facilitate deception detection in the concealed information test. Frontiers in Psychology, 4, 146. https://doi.org/10.3389/fpsyg.2013.00146
Vredeveldt, A., Hitch, G. J., & Baddeley, A. D. (2011). Eye closure helps memory by reducing cognitive load and enhancing visualisation. Memory and Cognition, 39(7), 1253-1263. https://doi.org/10.3758/s13421-011-0098-8
Vrij, A. (2008). Detecting lies and deceit: Pitfalls and opportunities. John Wiley & Sons.
Vrij, A., Fisher, R., Mann, S., & Leal, S. (2006). Detecting deception by manipulating cognitive load. Trends in Cognitive Sciences, 10(4), 141-142. https://doi.org/10.1016/j.tics.2006.02.003
Vrij, A., Fisher, R. P., & Blank, H. (2017). A cognitive approach to lie detection: A meta-analysis. Legal and Criminological Psychology, 22(1), 1-21. https://doi.org/10.1111/lcrp.12088
Vrij, A., Mann, S., & Leal, S. (2013). Deception Traits in Psychological Interviewing. Journal of Police and Criminal Psychology, 28(2), 115-126. https://doi.org/10.1007/s11896-013-9125-y
Vrij, A., Mann, S. A., Fisher, R. P., Leal, S., Milne, R., & Bull, R. (2008). Increasing cognitive load to facilitate lie detection: the benefit of recalling an event in reverse order. Law and Human Behavior, 32(3), 253-265. https://doi.org/10.1007/s10979-007-9103-y
Wasserman, S., & Bockenholt, U. (1989). Bootstrapping: Applications to psychophysiology. Psychophysiology, 26(2), 208-221. https://doi.org/10.1111/j.1469-8986.1989.tb03159.x
Weinberg, A., Ferri, J., & Hajcak, G. (2013). Interactions between attention and emotion. Handbook of cognition and emotion, 35-54.
指導教授 段正仁 鄭仕坤 審核日期 2023-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明