博碩士論文 102322006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:18.218.172.249
姓名 吳仲凱(Chung-kai Wu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 高強度鋼筋混凝土剪力牆連接梁耐震配筋之研究
(Study on Seismic Design for High Strength Reinforced Concrete Coupling Beams of shear walls)
相關論文
★ 變厚度X形消能裝置初步研究★ FRP筋對混凝土柱圍束效應之研究
★ 高拉力SD690鋼筋截斷設計之研究★ 高強度鋼筋混凝土梁構件耐震設計參數之研究
★ 鋼筋混凝土梁疲勞行為之初步研究★ 高拉力鋼筋混凝土滑移剪力設計之研究
★ 鋼筋混凝土梁有斜向鋼筋配置之耐震性能提升研究★ 非韌性鋼筋混凝土梁柱外接頭補強之研究
★ 新澆置鋼筋混凝土梁受反覆荷重之影響★ 非韌性鋼筋混凝土梁柱內接頭補強之研究
★ 鋼筋混凝土擴柱補強工法對非韌性梁柱接頭耐震能力提升之探討★ 雙層兩跨鋼筋混凝土抗彎構架耐震測試
★ 受損RC梁柱接頭補強之耐震成效評估★ 現有鋼筋混凝土建築物之耐震能力評估 ―以紐西蘭評估方法為基礎
★ 桁架軟化模式應用於無水平箍筋梁柱接頭剪力及變形曲線預測之研究★ 鋼筋混凝土三軸拱圍束效應用於補強柱受軸向及撓曲變形之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 鋼筋混凝土剪力牆為公認之優秀耐震構材之一,能有效增加水平向承載能力,使其在側向更具韌性。傳統型剪力牆系統通常配置在核心部分作為抗側力系統,但是由於美觀或實際需求,剪力牆系統經常需要設置門、窗等,故而對剪力牆開孔,所以剪力牆常使用延展性與能量消散較佳的連接梁(Coupling Beams)做連結,並期望塑角發生在連接梁端部與剪力牆底部,降低剪力牆其他區域損害程度,以維持耐震機制,形成連接式剪力牆系統。但由於美國規範ACI 318-14規定跨深小於2之連接梁需配置滿足規範型式之對角鋼筋籠,因其對角鋼筋籠之型式容易造成施工困難,導致施工品質不佳;且於規範之連接梁標稱剪力強度及上限值有過於保守趨勢,造成工程師不易設計合適之連接梁。另外,為了滿足高樓RC建築所需之高規格的耐震強度,採以部分材料使用新型高強度材料,並嘗試不同對角配筋型式,期望有效的使用高強度材料,藉此減少材料用量,提高環保意識。
  本試驗共設計五座跨深比為1.5之連接梁試體,經由雙曲率與零軸壓之狀態下進行反覆載重試驗,在不同之對角鋼筋降伏強度及對角配筋型式變化下,探討新型高強度材料應用於連接梁之情形,並針對美國規範ACI 318-14對於連接梁之對角配筋型式及標稱剪力強度進行探討與檢核其必要性。
  試驗結果顯示高強度材料應用於跨深比為1.5之連接梁時仍展現極限層間位移大於6%之位移能力,而對角束筋型式為可行之配筋方案之一,另外,使用高強度對角鋼筋可有效降低鋼筋比,改善施工問題,並展現相當良好之耐震行為。
摘要(英) Ductile coupled shear wall is the best seismic girders, the results of the seismic is outstanding, making the structure of the building effective against devastating earthquakes. It is advantage is the increase of the building is resistance against horizontal shear force.
  Because of the need of underground parking lot, holes are needed to be drilled through ductile couple shear wall for the use of stairwells, passages, and elevators. So the ductile couple shear walls system is needed to be connected by coupling beam to fulfill the needs of space. However, due to the provisions of ACI 318-14, the aspect-ratio of coupling beams is less than 2 must be configured to meet the specification of the design of diagonal bars cage. It will lead to in poor quality of construction because the complex construction of diagonal bars cage. And the nominal shear strength and its upper limit of ACI 318-14 are too conservative, engineers difficult to design an appropriate coupling beams. In addition, in order to meet the seismic intensity of the requirements in high-rise RC building, part of the material use the new high-strength materials, and try different designs of diagonal bars, expect effective use of high-strength materials, thereby reducing the amount of material, and raise environmental awareness.
  In this study, five reinforced concrete coupling beams which aspect-ratio is 1.5 are made as specimens. The experiment was carried out through the morph of dual-zone rate and the condition of without applying axial force after cyclic loading test and analytical methods to investigate diagonal reinforcement in different yield strength and design of diagonal bars, and to observe the situation of the new high-strength material used to coupling beams. In addition, this study also checked the type of diagonal bars and nominal shear strength under the specification of ACI 318-14.
  The test results show high strength coupling beams which aspect-ratio is 1.5 still show more than 6% ultimate drift ratio, and coupling beams with bundled diagonal bars is one of feasible type of diagonal bars, in addition, the use of high strength diagonal bars can reduce reinforcement ratio, improved construction issues, and show quite well the seismic behavior.
關鍵字(中) ★ 高強度鋼筋混凝土
★ 剪力牆連接梁
★ 對角配筋型式
★ 剪力強度
★ 韌性
關鍵字(英) ★ high-strength reinforced concrete
★ coupling beams
★ the design of diagonal bars
★ shear strength
★ ductile
論文目次 摘要 ………………………………………………………………………… i
Abstact ………………………………………………………………………… iii
誌謝 ………………………………………………………………………… v
目錄 ………………………………………………………………………… vii
表目錄 ………………………………………………………………………… ix
圖目錄 ………………………………………………………………………… xi
符號說明 ………………………………………………………………………… xvii
一、 緒論…………………………………………………………………… 1
1-1 研究動機與目的……………………………………………………… 1
1-2 研究內容與方法……………………………………………………… 2
二、 文獻回顧……………………………………………………………… 5
2-1 美國規範ACI 318-14於連接梁之規定……………………………… 5
2-2 剪力牆連接梁之相關研究測試研究與結果………………………… 6
2-2-1 國外鋼筋混凝土剪力牆連接梁之相關實驗與研究………………… 6
2-2-2 國內鋼筋混凝土剪力牆連接梁之相關實驗與研究………………… 8
2-3 軟化壓拉桿模型……………………………………………………… 10
三、 試驗規劃……………………………………………………………… 15
3-1 前言…………………………………………………………………… 15
3-2 試體設計……………………………………………………………… 16
3-3 試體製作……………………………………………………………… 19
3-3-1 基礎施作……………………………………………………………… 20
3-3-2 梁體施作……………………………………………………………… 20
3-3-3 試體澆置……………………………………………………………… 22
3-4 測試布置……………………………………………………………… 23
3-5 量測系統布置………………………………………………………… 26
3-5-1 內部量測系統………………………………………………………… 26
3-5-2 外部量測系統………………………………………………………… 27
3-5-2-1 儀器量測……………………………………………………………… 27
3-5-2-2 影像量測……………………………………………………………… 28
3-6 測試步驟……………………………………………………………… 28
四、 試驗觀察與結果……………………………………………………… 31
4-1 前言…………………………………………………………………… 31
4-2 材料試驗……………………………………………………………… 31
4-3 試體載重與位移行為曲線…………………………………………… 31
4-4 應變計量測…………………………………………………………… 39
4-5 裂縫發展與破壞模式………………………………………………… 42
五、 試驗分析與討論……………………………………………………… 49
5-1 前言…………………………………………………………………… 49
5-2 撓曲與剪力強度之分析與破壞模式之預測………………………… 50
5-2-1 撓曲強度……………………………………………………………… 50
5-2-2 剪力強度……………………………………………………………… 50
5-2-3 破壞模式預測………………………………………………………… 51
5-3 高強度對角鋼筋之貢獻……………………………………………… 52
5-4 對角配筋型式之比較………………………………………………… 53
5-4-1 以束筋取代鋼筋籠…………………………………………………… 53
5-4-2 使用高強度鋼筋並簡化配筋………………………………………… 54
六、 結論與建議…………………………………………………………… 57
6-1 結論…………………………………………………………………… 57
6-1-1 高強度對角鋼筋之適用性…………………………………………… 57
6-1-2 改變對角配筋(束筋及簡化配筋)之影響…………………………… 57
6-1-3 高強度鋼筋搭配簡化配筋之影響…………………………………… 58
6-1-4 規範ACI 318-14於連接梁剪力強度之規定………………………… 58
6-2 建議…………………………………………………………………… 59
參考文獻 ………………………………………………………………………… 60
附錄A 本試驗滿足ACI 318-14規範之設計計算…………………………… 213
附錄B 試體CB1.5-D-H剪力強度計算……………………………………… 214
附錄C 近年國內外連接梁之試體參數及強度計算………………………… 217
作者簡介 ………………………………………………………………………… 221
參考文獻 [1] Canadian Standards Association (CSA). (1984). “Design of concrete structures for buildings.” CAN3-A23.3-M94, Rexdale, Ontario, Canada.
[2] National Building Code of Canada (NBCC). (1995). Associates Committee on the National Building Code, Nation Researsh Council of Canada, Ottawa, Ontario, Canada.
[3] Nutan Kumar Subedi, “RC Coupled Shear Wall Structures. Ⅱ:Ultimate Strength Calculations”, Journal of Structural Engineering, ASCE Vol. 117, No. 3, March 1991, pp. 681-698.
[4] Chaallal O., Gauthier D., and Malenfant P., “Classification Methodology for Coupled Shear Walls”, Journal of Structural Engineering, ASCE Vol. 122, No. 12, December 1996, pp. 1453-1458.
[5] Hoenderkamp J. C. D., “Degree of Coupling in High-rise Mixed Shear Walls Structures”, Sa ̈dhanaa ̈ Vol. 37, Part 4, August 2012, pp. 481-492.
[6] ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-99) and Commentary (ACI 318R-99), American Concrete Institute, Farmington Hills, 1999.
[7] ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI 318R-08), American Concrete Institute, Farmington Hills, 2008.
[8] ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary (ACI 318R-11), American Concrete Institute, Farmington Hills, 2011.
[9] ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14), American Concrete Institute, Farmington Hills, 2014.
[10] Paulay, T., and Binney, J.,“Diagonally Reinforced Coupling Beams of Shear Walls”, Shear in Reinforced Concrete, SP-42, V. 2, American Concrete Institute, Farmington Hills, Mich.1974, pp. 579-598.
[11] Wallace, J. W.,“Modeling Issue for Tall Reinforced Concrete Core Wall Buildings”, Structural Design of Tall and Special Buildings, Vol. 16, No. 5, 2007 pp. 615-632.
[12] Barney, G. B.; Shiu, K. N.; Rabbat, B.G.; Fiorato, A.E.; Russell, H. G.; and Corley, W. G., Behavior of Coupling Beams under Load Reversals (RD068.01B), Portland Cement Association, Skokie, IL, 1980.
[13] Sang Whan Han, Chang Seok Lee, Myoungsu Shin, and Kihak Lee, “Cyclic Performance of Precast Coupling Beams with Bundled Diagonal Reinforcement”, Engineering Structures 93, June 2015, pp. 142-151.
[14] Mander J. B., Priestley M. J. N., and Park R., “Theoretical Stress-Strain Model for Confined Concrete”, Journal of Structural Engineering, ASCE Vol. 114, NO. 8, August 1988, pp. 1804-1823.
[15] Tanuwidjaja, H., R., (2007) “Coupling Beams in the Satrio Tower”, Concrete International, May 2007, pp. 59-63.
[16] Brad D. Weldon, and Yahya C. Kurama, M., “Experimental Evaluation of Posttensioned Precast”, Journal of Structural Engineering, ASCE Vol. 136, NO. 9, September 1, 2010, pp. 1066-1077.
[17] Sergio F. Breña, M.ASCE, and Onur Ihtiyar, “Performance of Conventionally Reinforced Coupling Beams Subjected to Cyclic Loading”, Journal of Structural Engineering, ASCE Vol. 137, NO. 6, June 1, 2011, pp. 665-676.
[18] 鄭志宏,「鋼筋混凝土連接梁反覆載重測詴之研究」,國立台灣大學土木工程系,碩士論文,民國99年。
[19] 王亭惟,「鋼筋混凝土連接梁耐震鋼筋配置之研究」,國立台灣大學土木工程系,碩士論文,民國100年。
[20] 張于軒,「鋼筋混凝土剪力牆連接梁鋼筋配置之研究」,國立台灣大學土木工程系,碩士論文,民國101年。
[21] 蔡尚錡,「鋼筋混凝土剪力牆連接梁耐震行為之研究」,國立台灣大學土木工程系,碩士論文,民國102年。
[22] 楊善淳,「高強度鋼筋混凝土剪力牆連接梁耐震行為之研究」,國立台灣科技大學土木與防災研究所,碩士論文,民國102年。
[23] 林秉誼,「鋼筋混凝土剪力牆連接梁耐震配筋之研究」,國立台灣大學土木工程系,碩士論文,民國103年。
[24] Hwang, S. J., and Lee, H. J., “Analytical Model for Predicting SfearStrengths of Interior Reinforceed Concreat Beam-Column Joint forSeismic Resistance”, ACI Structural Journal, Vol. 97, No 1, pp. 35-44.January-February 2000.
[25] Hwang, S. J., and Lee, H. J., “Shear Strength Prediction for Deep Beams”, ACI Structural Journal, Vol. 97, No 1, pp. 35-44.January-February 2000.
[26] Saha ̈fer, K., “Strut-and-Tie Models for the Design of Structural Concrete”, Notes of Workshop, Department of Civil Engineering, National Cheng Kung University, Taiwan 1996, pp. 140.
[27] Hwang,S.J.,Fang,W.H.,Lee, H. J.,and Yu,H.W.,“Analytical Model for Predicting Shear Strengths of Squat Walls”, Journal of Structural Engineering, ASCE Vol. 127, No. 1, January 2001, pp. 43-50.
[28] 李宏仁、黃世建,「鋼筋混凝土結構D區域之剪力強度評估-軟化壓拉桿模型簡算法之實例應用」,結構工程,第十七卷,第四期,第53-70頁,2002。
[29] Hwang, S. J., and Lee, H. J., “Strength Prediction for Discontinuity Regions by Softened Strut-and Tie Model”, Journal of Structural Engineering, ASCE, Vol. 128, December 2002, pp. 1519-1526.
[30] Hsu, T. T. C., “Soften truss model theory for shear and torsion,” ACI Structural Journal, Vol. 85, pp. 624-635. 1988.
[31] FEMA 306 [1998]. Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings: Basic Procedures Manual, Federal Emergency Management Agency, Washington, D.C., May.
[32] FEMA 356 [2000]. Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, D.C., November.
[33] ASCE/SEI 41/06, 2007 .Seismic Rehabilitation of Existing Buildings, American Society of Civil Engineers, Reston, Virginia.
[34] ACI Committee 374, “Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary,” American Concrete Institute, Farmington Hills, 2005.
[35] Canbolat, B. A., Parra-Montesinos, G. J., and Wight, J. K., “Experimental Study on Seismic Behavior of High-Performance Fiber-Reinforced Cement Composite Coupling Beams,”ACI Structural J., Vol.102, 2005 pp. 159-166.
[36] 林克強,紀凱密,「高強度混凝土之 T 頭鋼筋錨定行為研究」,新型耐震研究工法之研發,國家地震工程研究中心,台北,民國 100 年。
[37] Tom Paulay, “The Displacement Capacity Reinforced Concrete Coupled Walls”, Engineering Structures, Vol. 24, 2003, pp. 1165-1175.
[38] Harries K. A., M.EERI, Gong B. and Shahrooz B.M., “Behavior and Design of Reinforced Concrete Steel, and Steel-Concrete Coupling Beams”, 2000.
[39] Tom Paulay, “Seismic Displacement Capacity of Ductile Reinforced Concrete Building Systems”, Bulletin of the New Zealand Society for Earthquake Engineering, Vol. 36, No. 1, March 2003, pp. 47-65.
指導教授 王勇智、林敏郎(Yung-chih Wang Min-lang Lin) 審核日期 2016-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明