參考文獻 |
[1] M. Wu, B. Johannesson, M. Geiker, A review: Self-healing in cementitious materials and engineered cementitious composite as a selfhealing material, Construction and Building Materials, 28 (2012) 571-583. [2] V.C. Li, E. Herbert, Robust self-healing concrete for sustainable infrastructure, Journal of Advanced Concrete Technology, 10 (2012) 207218.
[3] Y. Yang, E.H. Yang, V.C. Li, Autogenous healing of engineered cementitious composites at early age, Cement and Concrete Research, 41 (2011) 176-183.
[4] Y. Yang, M.D. Lepech, E.H. Yang, V.C. Li, Autogenous healing of engineered cementitious composites under wet-dry cycles, Cement and Concrete Research, 39 (2009) 382-390.
[5] M. Li, V.C. Li, Cracking and healing of engineered cementitious composites under chloride environment, ACI Materials Journal, 108 (2011) 333-340.
[6] V.C. Li, T. Kanda, Engineered cementitious composites for structural applications, Journal of Materials in Civil Engineering, 10 (1998) 66-69.
[7] C.C. Hung, Y.S. Chen, Innovative ECC jacketing for retrofitting sheardeficient RC members, Construction and Building Materials, 111 (2016) 408-418.
[8] C.C. Hung, W.M. Yen, K.H. Yu, Vulnerability and improvement of reinforced ECC flexural members under displacement reversals: Experimental investigation and computational analysis, Construction and Building Materials, 107 (2016) 287-298.
[9] C.C. Hung, Y.F. Su, On modeling coupling beams incorporating strainhardening cement-based composites, Computers and Concrete, 12 (2013) 565-583.
[10] V.C. Li, S. Wang, C. Wu, Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC), ACI Materials Journal, 98 (2001) 483-492.
[11] 行政院公共工程委員會, 公共工程高爐石混凝土使用手冊.
[12] J. Zhou, S. Qian, M.G.S. Beltran, G. Ye, K. Van Breugel, V.C. Li, Development of engineered cementitious composites with limestone96
powder and blast furnace slag, Materials and Structures/Materiaux et Constructions, 43 (2010) 803-814. [13] Y. Zhu, Y. Yang, Y. Yao, Use of slag to improve mechanical properties of engineered cementitious composites (ECCs) with high volumes of fly ash, Construction and Building Materials, 36 (2012) 1076-1081. [14] I. Lim, J.C. Chern, T. Liu, Y.W. Chan, Effect of ground granulated blast furnace slag on mechanical behavior of PVA-ECC, Journal of Marine Science and Technology (Taiwan), 20 (2012) 319-324.
[15] C. Edvardsen, Water permeability and autogenous healing of cracks in concrete, ACI Materials Journal, 96 (1999) 448-454.
[16] S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, S. Viswanathan, Autonomic healing of polymer composites, Nature, 409 (2001) 794-797.
[17] C.C. Hung, W.M. Yen, Experimental evaluation of ductile fiber reinforced cement-based composite beams incorporating shape memory alloy bars, Procedia Engineering, 2014, pp. 506-512.
[18] T. Nishiwaki, M. Koda, M. Yamada, H. Mihashi, T. Kikuta, Experimental study on self-healing capability of FRCC using different types of synthetic fibers, Journal of Advanced Concrete Technology, 10 (2012) 195-206.
[19] S. Qian, J. Zhou, M.R. de Rooij, E. Schlangen, G. Ye, K. van Breugel, Self-healing behavior of strain hardening cementitious composites incorporating local waste materials, Cement and Concrete Composites, 31 (2009) 613-621.
[20] Akira Hosoda, Takayuki Higuchi, Masataka Eguchi, Haruaki Yoshida, H. Aoki, Self Healing of Longitudinal Cracks in Utility Concrete Pole, Journal of Advanced Concrete Technology 10 (2012) 278-284.
[21] M. Sahmaran, G. Yildirim, T.K. Erdem, Self-healing capability of cementitious composites incorporating different supplementary cementitious materials, Cement and Concrete Composites, 35 (2013) 89101.
[22] Y. Zhu, Y. Yang, Y. Yao, Autogenous self-healing of engineered cementitious composites under freeze-thaw cycles, Construction and Building Materials, 34 (2012) 522-530.
[23] 吳羽帆, 水化早期溫度對延遲性鈣礬石形成之影響, 土木工程
學系, 國立中央大學, 桃園縣, 2014, pp. 150.97
[24] 吳清哲, 低放射性廢棄物處置場障壁受硫酸鹽侵蝕之劣化模式
評估, 土木工程研究所, 國立中央大學, 桃園縣, 2006, pp. 147.
[25] 黃兆龍, 高性能混凝土理論與實務, 詹氏書局, (2003).
[26] J. Stark, K. Bollmann, Delayed Ettringite Formation in Concrete, ZKG International, 53 (2000) 232-240.
[27] K. Tosun, Effect of SO3 content and fineness on the rate of delayed ettringite formation in heat cured Portland cement mortars, Cement and Concrete Composites, 28 (2006) 761-772.
[28] E. Özbay, O. Karahan, M. Lachemi, K.M.A. Hossain, C.D. Atis, Dual effectiveness of freezing-thawing and sulfate attack on high-volume slagincorporated ECC, Composites Part B: Engineering, 45 (2013) 1384-1390.
[29] 盧秉瑋, 混凝土工程障壁之氯離子及失鈣劣化行為, 土木工程
研究所, 國立中央大學, 桃園縣, 2006, pp. 149.
[30] 蘇彥方, 綠色高韌性纖維混凝土(Green-ECC)本土化發展與自癒
合能力之研究, 土木工程學系, 國立中央大學, 桃園縣, 2014, pp. 111.
[31] C.C. Hung, Y.F. Su, Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations, Construction and Building Materials, 118 (2016) 194203. [32] ASTM, ASTM C39/C39M Compressive Strength of Cylindrical Concrete Specimens, (2013).
[33] 陳育瑄, 鋼絲網加勁高韌性纖維混凝土於RC梁構件剪力補強研
究, 土木工程學系, 國立中央大學, 桃園縣, 2015, pp. 220.
[34] ASTM, ASTM C1012 / C1012M Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution.
[35] ASTM, ASTM D1141-98 Standard Practice for the Preparation of Substitute Ocean Water, (2013). |