博碩士論文 102322030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:35.171.45.182
姓名 洪暄惠(Hsuan-Hui Hung)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 高爐石高韌性纖維混凝土(ECC)之開發與自癒合研究
相關論文
★ 耦合結構牆地震行為與性能化設計法★ 形狀記憶合金於抗震RC耦合牆系統之初步研究
★ 綠色高韌性纖維混凝土(Green-ECC)本土化發展與自癒合能力之研究★ 鋼絲網加勁高韌性纖維水泥基複合材料之力學行為研究
★ 高強度鋼筋加勁之超高性能纖維混凝土懸臂梁於反覆載重作用下之撓曲行為★ 高韌性纖維混凝土(ECC)之材料配比及添加物對收縮及力學性質影響
★ 材料組成比例對超高性能纖維混凝土之工作性與力學性質之影響★ 耦合結構牆受近斷層地震作用之行為
★ 混凝土修補試體之有限元素分析★ 黏土層中併行潛盾隧道互制現象之有限元素分析
★ 降水引致單樁基礎行為之有限元素分析★ 斷裂式有限元素法之網格策略與向量化/平行化加速運算
★ 潛盾隧道開挖沉陷之有限元素分析★ 降水引致單椿基礎負摩擦力行為之有限元素分析
★ 緩衝材料熱傳導性質與放射性廢料處置場溫度效應★ 黏土層中潛盾隧道開挖沉陷之有限元素分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究探討高爐石粉之含量對於高韌性纖維混凝土(Engineered
Cementitious Composites,ECC)力學性質之影響,包括壓力、拉力及撓曲性質。結果顯示,使用高爐石粉取代飛灰能提高 ECC 的抗壓強
度,且依然能保有應變硬化與多重開裂的特性,於齡期 28 天時,抗
壓強度可達 75MPa,最大拉應變均能超過 1%。將高爐石粉含量提高,
抗壓強度、最大拉應力與極限撓曲應力會有些微下降的趨勢,但仍高
於使用飛灰的 ECC。
  最後,探討高爐石 ECC 之自癒合能力,以拉力試驗、表面裂縫
寬度觀測及掃描式電子顯微鏡(Scanning Electron Microscope,SEM)觀察並比較受到不同程度之破壞(預拉應變 0.5%及 1.0%)後,置入三種環境中(自來水環境、硫酸鹽環境及人工海水環境)28 天的自癒合程度。結果顯示,不論於自來水環境或是惡劣環境下之試體均有自癒合行為發生。
摘要(英) The objectives of this research discussed the influence on mechanical properties of Engineered Cementitious Composites (ECC) using slag. Including pressure, tensile and flexural properties. The results show that using slag can improve the ECC compressive strength, and retain characteristic of strain hardening and multiple cracking. Age of 28 days, the compressive strength is up to 75MPa, the maximum tensile strain can exceed 1%. When slag content increased, compressive strength, maximum tensile stress and ultimate flexural stress will be slight decline, but still higher than fly ash ECC.
Finally, the investigation into the self-healing capacities of ECC specimens. In tensile test, surface crack width observation and scanning electron microscope (SEM) to observe and compare the degree of selfhealing with two different degrees of pre-crack (0.5% and 1.0%) and three different storage environments (water, sulfate solution and substitute ocean water). The results show, specimens has self-healing behavior regardless of storage in the water or under the harsh environment.
關鍵字(中) ★ 高韌性纖維混凝土
★ 自癒合
關鍵字(英) ★ ECC
★ self-healing
論文目次 摘要.....i
Abstract.....ii
誌謝.....iii
目錄.....iv
圖目錄.....vii
表目錄.....xiii
第一章 緒論.....1
1.1研究動機.....1
1.2研究目的.....2
1.3研究方法.....2
第二章 文獻回顧.....3
2.1高韌性纖維混凝土.....3
2.2使用高爐石粉於高韌性纖維混凝土.....4
2.3混凝土的自癒合能力.....6
2.4不同環境中的混凝土.....18
2.4.1硫酸鹽環境.....18
2.4.2氯離子環境.....22
第三章 實驗規劃.....23
3.1實驗材料.....24
3.2試體製作.....27
3.2.1配比.....27
3.2.2拌合程序.....28
3.2.3試體灌製與養護.....28
3.3力學性能試驗.....29
3.3.1壓力試驗.....29
3.3.2拉力試驗.....29
3.3.3四點彎矩試驗.....31
3.4自癒合能力試驗.....31
3.4.1預拉及拉力試驗.....32
3.4.2試體表面觀察.....33
3.4.3材料分析試驗.....35
3.4.4環境設置.....37
第四章 實驗結果與討論.....39
4.1不同配比之力學性質比較.....39
4.1.1抗壓試驗.....39
4.1.2抗拉試驗.....40
4.1.3四點彎曲試驗.....42
4.2不同配比之自癒合結果.....43
4.2.1不同環境下各配比之裂縫自癒合結果.....45
4.2.2自癒合前後表面裂縫變化觀察.....57
4.2.3自癒合後拉力性質恢復結果.....69
4.2.4自癒合後以掃描式電子顯微鏡觀察.....83
第五章 結論與建議.....90
參考文獻.....94
附錄.....97
參考文獻 [1] M. Wu, B. Johannesson, M. Geiker, A review: Self-healing in cementitious materials and engineered cementitious composite as a selfhealing material, Construction and Building Materials, 28 (2012) 571-583. [2] V.C. Li, E. Herbert, Robust self-healing concrete for sustainable infrastructure, Journal of Advanced Concrete Technology, 10 (2012) 207218.
[3] Y. Yang, E.H. Yang, V.C. Li, Autogenous healing of engineered cementitious composites at early age, Cement and Concrete Research, 41 (2011) 176-183.
[4] Y. Yang, M.D. Lepech, E.H. Yang, V.C. Li, Autogenous healing of engineered cementitious composites under wet-dry cycles, Cement and Concrete Research, 39 (2009) 382-390.
[5] M. Li, V.C. Li, Cracking and healing of engineered cementitious composites under chloride environment, ACI Materials Journal, 108 (2011) 333-340.
[6] V.C. Li, T. Kanda, Engineered cementitious composites for structural applications, Journal of Materials in Civil Engineering, 10 (1998) 66-69.
[7] C.C. Hung, Y.S. Chen, Innovative ECC jacketing for retrofitting sheardeficient RC members, Construction and Building Materials, 111 (2016) 408-418.
[8] C.C. Hung, W.M. Yen, K.H. Yu, Vulnerability and improvement of reinforced ECC flexural members under displacement reversals: Experimental investigation and computational analysis, Construction and Building Materials, 107 (2016) 287-298.
[9] C.C. Hung, Y.F. Su, On modeling coupling beams incorporating strainhardening cement-based composites, Computers and Concrete, 12 (2013) 565-583.
[10] V.C. Li, S. Wang, C. Wu, Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC), ACI Materials Journal, 98 (2001) 483-492.
[11] 行政院公共工程委員會, 公共工程高爐石混凝土使用手冊.
[12] J. Zhou, S. Qian, M.G.S. Beltran, G. Ye, K. Van Breugel, V.C. Li, Development of engineered cementitious composites with limestone96
powder and blast furnace slag, Materials and Structures/Materiaux et Constructions, 43 (2010) 803-814. [13] Y. Zhu, Y. Yang, Y. Yao, Use of slag to improve mechanical properties of engineered cementitious composites (ECCs) with high volumes of fly ash, Construction and Building Materials, 36 (2012) 1076-1081. [14] I. Lim, J.C. Chern, T. Liu, Y.W. Chan, Effect of ground granulated blast furnace slag on mechanical behavior of PVA-ECC, Journal of Marine Science and Technology (Taiwan), 20 (2012) 319-324.
[15] C. Edvardsen, Water permeability and autogenous healing of cracks in concrete, ACI Materials Journal, 96 (1999) 448-454.
[16] S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, S. Viswanathan, Autonomic healing of polymer composites, Nature, 409 (2001) 794-797.
[17] C.C. Hung, W.M. Yen, Experimental evaluation of ductile fiber reinforced cement-based composite beams incorporating shape memory alloy bars, Procedia Engineering, 2014, pp. 506-512.
[18] T. Nishiwaki, M. Koda, M. Yamada, H. Mihashi, T. Kikuta, Experimental study on self-healing capability of FRCC using different types of synthetic fibers, Journal of Advanced Concrete Technology, 10 (2012) 195-206.
[19] S. Qian, J. Zhou, M.R. de Rooij, E. Schlangen, G. Ye, K. van Breugel, Self-healing behavior of strain hardening cementitious composites incorporating local waste materials, Cement and Concrete Composites, 31 (2009) 613-621.
[20] Akira Hosoda, Takayuki Higuchi, Masataka Eguchi, Haruaki Yoshida, H. Aoki, Self Healing of Longitudinal Cracks in Utility Concrete Pole, Journal of Advanced Concrete Technology 10 (2012) 278-284.
[21] M. Sahmaran, G. Yildirim, T.K. Erdem, Self-healing capability of cementitious composites incorporating different supplementary cementitious materials, Cement and Concrete Composites, 35 (2013) 89101.
[22] Y. Zhu, Y. Yang, Y. Yao, Autogenous self-healing of engineered cementitious composites under freeze-thaw cycles, Construction and Building Materials, 34 (2012) 522-530.
[23] 吳羽帆, 水化早期溫度對延遲性鈣礬石形成之影響, 土木工程
學系, 國立中央大學, 桃園縣, 2014, pp. 150.97
[24] 吳清哲, 低放射性廢棄物處置場障壁受硫酸鹽侵蝕之劣化模式
評估, 土木工程研究所, 國立中央大學, 桃園縣, 2006, pp. 147.
[25] 黃兆龍, 高性能混凝土理論與實務, 詹氏書局, (2003).
[26] J. Stark, K. Bollmann, Delayed Ettringite Formation in Concrete, ZKG International, 53 (2000) 232-240.
[27] K. Tosun, Effect of SO3 content and fineness on the rate of delayed ettringite formation in heat cured Portland cement mortars, Cement and Concrete Composites, 28 (2006) 761-772.
[28] E. Özbay, O. Karahan, M. Lachemi, K.M.A. Hossain, C.D. Atis, Dual effectiveness of freezing-thawing and sulfate attack on high-volume slagincorporated ECC, Composites Part B: Engineering, 45 (2013) 1384-1390.
[29] 盧秉瑋, 混凝土工程障壁之氯離子及失鈣劣化行為, 土木工程
研究所, 國立中央大學, 桃園縣, 2006, pp. 149.
[30] 蘇彥方, 綠色高韌性纖維混凝土(Green-ECC)本土化發展與自癒
合能力之研究, 土木工程學系, 國立中央大學, 桃園縣, 2014, pp. 111.
[31] C.C. Hung, Y.F. Su, Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations, Construction and Building Materials, 118 (2016) 194203. [32] ASTM, ASTM C39/C39M Compressive Strength of Cylindrical Concrete Specimens, (2013).
[33] 陳育瑄, 鋼絲網加勁高韌性纖維混凝土於RC梁構件剪力補強研
究, 土木工程學系, 國立中央大學, 桃園縣, 2015, pp. 220.
[34] ASTM, ASTM C1012 / C1012M Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution.
[35] ASTM, ASTM D1141-98 Standard Practice for the Preparation of Substitute Ocean Water, (2013).
指導教授 洪崇展、張瑞宏 審核日期 2016-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明