博碩士論文 102322043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:3.236.241.39
姓名 吳建宏(Chien-hung Wu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 基樁減振器幾何尺寸變化之減振變形特性
相關論文
★ 動力夯實之有效影響深度與地表振動阻隔研究★ 砂土層中潛盾機地中接合漏水引致地層下陷之案例探討
★ 動力壓密工法施工引致地表振動之阻隔★ 音波式圓錐貫入試驗於土層界面判定之應用
★ 孔洞開挖後軟弱地盤之沉陷行為★ 超載對打設排水帶後軟弱地盤壓密行為之影響
★ 山岳隧道湧水處理之研究★ 砂土中基樁側向位移之改良研究
★ 圓錐貫入試驗中土壤音壓之研究★ 水泥混合處理砂質土壤液化特性之改良研究
★ 扶壁改善深開挖擋土壁體變形行為之研究★ 微音錐應用於土壤音射特性之研究
★ 黏性土壤受定量擠壓變形後之力學行為★ 黏土中短樁側向位移之改良研究
★ 砂土經水泥改良後之力學性質★ 黏土中模型樁側向位移之改良研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究嘗試設置液壓減振器於基樁樁頭,改變基樁承載瞬間載重之機制,讓基樁承受瞬間載重的衝擊減少,降低基樁的永久沉陷量,而進行了一系列的室內模型試驗。以峴港砂與礫石填充於圓桶形土槽中模擬現地情況,並在砂土中央放置模型樁至承載層,用不同高度的落錘衝擊樁頭,模擬車輛或是列車的瞬間衝擊力與靜載重,並於砂土層與礫石層中之不同深度埋設加速度計,以量測樁周土壤之振動,設置兩支LVDT量測樁身永久沉陷量和減振器上部的動態變位量。由前人的研究可知液壓減振器具有良好的最大動態變位量不大,及基樁之靜載重大小會影響其極限支承力,為了在最大動態位移量可接受的範圍內求得較好的減振效果,故控制其體積大小,本研究改變液壓減振器之幾何尺寸,探討減振與變形的關係,並進行一系列的模型試驗。由試驗結果得知,當減振器之直徑加大,其土壤振動與基樁永久沉陷量皆會減小,而當減振器高度增加時,僅能夠減小其基樁永久沉陷量,減振效果卻未見增大,故加大減振器之直徑為一較好的改良方法。
摘要(英) This research tried to set a shock absorber on pile head to improve the transfer mechanism of shock loading, and expect to reduce the vibration on soil and settlement of pile foundation. A series of model pile tests were performed in laboratory. In these tests, Danang sand and gravel were filled in a cylindrical test pit to simulate sand layer and a steel pipe was set at the center of this test pit as model pile. Drop a steel hammer with various heights on the head of model pile to simulate the shock or loading of passing vehicle or train. The acceleration data was measured with accelerometers set at various depth. And the permanent settlement of pile shaft and dynamic displacement of shock absorber were measured with two sets of LVDT. According to the previous studies, it is understood that the dynamic displacement of hydraulic shock-absorber is not apparent and the static load on pile will influence the value of ultimate load. In order to obtain the best damping effect within the acceptable dynamic displacement, this research changed the diameter and height of shock absorber to perform a series of experiments. The experimental results showed that a shock absorber with larger diameter will achieve a better result of vibration suppression and smaller permanent settlement. The a shock absorber with larger height can reduce the maximum amount of permanent settlement, but has no effect to vibration suppression.
關鍵字(中) ★ 模型樁
★ 液壓減振器
★ 加速度
★ 動態變位量
★ 永久沉陷量
關鍵字(英) ★ model pile
★ hydraulic shock-absorber
★ acceleration
★ dynamic displacement
★ permanent settlement
論文目次 摘要........................................................................................................................I
Abstract ................................................................................................................ II
目錄.....................................................................................................................III
照片目錄............................................................................................................VII
表目錄.............................................................................................................. VIII
圖目錄.................................................................................................................IX
符號說明.......................................................................................................... XIII
第一章 緒論....................................................................................................... 1
1.1 前言....................................................................................................... 1
1.2 研究動機與目的................................................................................... 1
1.3 研究方法............................................................................................... 3
1.4 論文內容............................................................................................... 3
第二章 文獻回顧............................................................................................... 6
2.1 基樁之相關規範.................................................................................... 6
2.1.1 基樁之設計規範....................................................................... 6
2.1.2 基樁之極限承載力理論........................................................... 7
2.1.3 基樁之沉陷理論....................................................................... 8
IV
2.1.4 基樁支承力與沉陷量之關係 ................................................ 10
2.1.5 樁-土介面之承載機制......................................................... 12
2.1.6 土壤中振波之傳遞行為......................................................... 12
2.1.7 基樁受瞬間衝擊所產生之振動能量..................................... 14
2.2 減振工法相關研究.............................................................................. 16
2.2.1 槽溝減振工法......................................................................... 16
2.2.2 阻波塊及蜂窩式阻波塊工法 ................................................ 18
2.2.3 地盤改良工法......................................................................... 20
2.2.4 數值分析................................................................................. 21
2.2.5 樁基礎受衝擊荷重之減振研究 ............................................ 23
2.2.6 減振基樁之相關研究............................................................. 23
2.3 列車與汽車等行駛時所造成之振動.................................................. 27
2.4 消能元件之力學特性.......................................................................... 28
2.5 樁基礎容許沉陷量之相關規範.......................................................... 30
2.5.1 容許角變量............................................................................. 30
2.5.2 容許沉陷量............................................................................. 31
2.6 基樁發生沉陷之相關案例.................................................................. 31
2.6.1 高屏大橋破壞案例................................................................. 31
2.6.2 雙園大橋破壞案例................................................................. 32
V
2.6.3 橋墩破壞原因......................................................................... 33
第三章 詴驗器材與方法................................................................................. 56
3.1 詴驗土層............................................................................................ 56
3.1.1 承載層..................................................................................... 56
3.1.2 砂土層..................................................................................... 57
3.2 詴驗土樣之相對密度.......................................................................... 58
3.2.1 最大乾單位重詴驗................................................................. 58
3.2.2 最小乾單位重詴驗................................................................. 59
3.3 詴體製作.............................................................................................. 59
3.3.1 霣降法..................................................................................... 60
3.3.2 乾搗法..................................................................................... 61
3.4 詴驗儀器與校正.................................................................................. 62
3.4.1 LVDT 之校正方法................................................................. 62
3.4.2 詴驗儀器................................................................................. 63
3.4.3 液壓減振器之製作................................................................. 65
3.5 詴驗規劃與配置.................................................................................. 66
3.5.1 詴驗規劃................................................................................. 67
3.5.2 詴體架設方法......................................................................... 67
第四章 詴驗結果與分析................................................................................. 83
VI
4.1 未改良模型樁受振行為...................................................................... 83
4.2 改良模型樁受振行為.......................................................................... 85
4.2.1 液壓減振器對樁周土壤之受振行為 .................................... 85
4.2.2 液壓減振器之減振特性......................................................... 86
4.2.3 不同尺寸液壓減振器之減振效果 ........................................ 87
4.3 液壓減振器之動態變位量.................................................................. 88
4.3.1 液壓減振器之動態變位量 .................................................... 89
4.4 模型樁之永久沉陷量.......................................................................... 90
4.4.1 減振器對樁身永久沉陷量之改良效果 ................................ 91
4.5 模型樁受衝擊力之推估...................................................................... 92
第五章 結論與建議....................................................................................... 111
5.1 結論.................................................................................................... 111
5.2 建議.................................................................................................... 112
參考文獻........................................................................................................... 113
參考文獻 1. 土質工學會,土質試驗法,日本土質工學會,第76-78頁,第172-188頁 (1976)。
2. 公路橋梁設計規範,交通部公路總局,台北 (2011)。
3. 古翰,「基樁減振器空氣填充度之減振特性與變形特性」,碩士論文,國立中央大學土木工程學系,中壢 (2012)。
4. 竹宮宏和,「波動遮斷ブロック(WIB)の受動的制振效果」,土木學會論文集,第五百三十六 期,第221-230 頁 (1996)。
5. 林思銘,「基樁之減振改良研究」,國立中央大學土木工程學系碩士論文,中壢(2010)。
6. 林筠原,「減振基樁之瞬間變形與減振效果」,國立中央大學土木工程學系碩士論文,中壢(2009)。
7. 徐俊雄,「填充槽溝阻隔效應之實驗研究與分析」,國立成功大學土木工程學系碩士論文,台南(1993)。
8. 倪勝火、莊明仁、鐘啟泰,「台南科學園區背景及相關振源量測與分析」,第20屆中日工程技術研討會,公共工程組(10-2),高速鐵路行車引致軌道振動之問題論文集,第113-129頁 (1999)。
9. 陳斗生,「樁基礎之沉陷問題淺論」,地工技術,第101卷,第67-78頁 (2004)。
10. 陳怡云,「場鑄基樁軸向承載行為及性能設計應用之研究」,碩士論文,國立臺灣科技大學營建工程系,台北 (2012)。
11. 陳政昇,「基樁之減振與沉陷特性」,碩士論文,國立中央大學土木工程學系,中壢 (2013)。
12. 張永欣,「砂土中模型樁之減振與摩擦特性」,碩士論文,國立中央大學土木工程學系,中壢 (2014)。
13. 黃富雄,「原型填充槽溝對波傳阻隔效果之詴驗研究」,國立成功大學土木工程學系碩士論文,台南(2004)。
14. 孫宏華,「考慮土壤液化機制下震波傳遞之行為與槽溝隔振數值模擬」,國立中山大學海洋環境及工程研究所碩士論文,高雄(2003)。
15. 曾乙哲,「複合勁度減振彈簧對砂土中模型樁動態性質之影響」,國立中央大學土木工程學系碩士論文,中壢(2006)。
16. 楊永斌,「高速列車所引致之土壤振動分析法」,中興工程顧問社,臺北(1995)。
17. 歐韋麟,「砂土中減振模型基樁之動態性質」,碩士論文,國立中央大學土木工程學系碩士論文,中壢 (2007)。
18. 簡枝龍,「溝對降低地表水平剪力波有效性之研究」,碩士論文,國立中央大學土木工程學系碩士論文,中壢(1985)。
19. 游以民,「減振基樁與樁周土壤之振波傳遞行為」,國立中央大學土木工程學系碩士論文,中壢(2005)。
20. 蔡瑋育,「高鐵列車行經南科園區引致環境振動之分析」,碩士論文,國立成功大學土木工程學系,台南 (2009)。
21. Athanasopoulos, G.A., Pelekis, P.C., and Anagnostopoulos, G.A., “Effect of soil stiffness in the attenuation of Rayleigh-wave motions from field measurements,” Soil Dynamics and Earthquake Engineering, Vol. 19, No. 4, pp. 277-288 (2000).
22. Attewell, P.B., and Farmer, I.W., “Attenuation of ground vibrations from pile driving,” Ground Engineering, Vol. 6, No. 4, pp. 9-26 (1973).
23. Barkan, D.D., “Dynamic of Bases and foundation,” McGraw-Hill Book Co., New York, pp.434 (1962).
24. Bjerrum, L., “Allowable settlement of structures,” Proceedings of the 6th European Conference on Soil Mechanics and Foundation Engineering, Weisbaden, Germany, Vol. 3, pp. 135-137 (1963).
25. Chehab, A.G., and Ei Naggar, M.H., “Design of efficient base isolation forhammers and presses,” Soil Dynamics and Earthquake Engineering,Vol. 23, No. 2, pp. 127-141 (2003).
26. Coyle, H.M., and Reese, L.C., “Load transfer for axially loaded piles in clay,” Journal of the soil Mechanics and Foundation Division, Vol. 92, No. 2, pp. 1-26 (1966).
27. Coyle, H.M., and Sulaiman, I.H., “Skin friction for steel piles in sand,” Journal of Soil Mechanics and Foundation Division, Vol. 93, No. 6, pp. 261-278 (1967).
28. Chouw, N., and Schmid, G., “Building isolation using the transmitting behavior of a soil layer,” Proceedings of Tenth Wisconsin Center for Environmental Education, Madrid, Spain, pp.2519-2524 (1992).
29. Ewing, W.M., Jardetzky, W. S., and Press, P., “Elastic waves in layered media, ” McGraw-Hill, New York, pp. 380 (1957).
30. Haupt, W.A., “Model test on screening of surface waves,” Proc., 10th int.Conf. soil mech. and found energy., Stockholm,” Vol.3, pp.215-222 (1981).
31. Kramer, S.L., Geotechnical Earthquake Engineering, Prentice-Hall International Series in civil Engineering Mechanics, Upper Saddle River, New Jersey, pp. 174-180 (1996).
32. Kim, D.S., and Lee, J.S., “Propagation and attenuation characteristics of various ground vibrations,” Soil Dynamics and Earthquake Engineering, Vol. 19, pp. 115-126 (2000).
33. Li, Y., and Qiang, S., “Dynamics of Wind-Rail Vehicle-Bridge Systems,”Journal of Wind Engineering and Industrial Aerodynamics, Vol. 93, Issue.6, pp. 483-507 (2005).
34. Lysmer, J., and Wass, G., “Shear waves in plane infinite structure,” Journal of the Engineering MechanicsDivision, ASCE, Vol.98, No.1, pp. 85-105(1972).
35. Miller, G.F., and Pursey, H., "On the partitioning of energy between elastic waves in a semi-infinite solid," Proceedings of the Royal Society of London, London, U.K., Series A 233, pp. 55-69 (1955).
36. O’Rourke, T.D., and Kulhawy, F.H., “Observations on load tests on drilled shafts,” Drilled Piers and Caissons II, New York, pp. 113-128(1985).
37. Parry, R.H., and Swain, C.W., “Effective stress method of calculating skin friction on driven piles in soft clay,” Ground Engineering, Vol. 4, pp. 24-26 (1977).
38. Poulos, H.G., and Davis, E.H., Pile Foundation Analysis and Design, Wiley, New York, pp. 125 (1980).
39. Randolph, M.F., and Wroth, C.P., “Analysis of deformation of vertically loaded piles,” Journal of the Geotechnical Engineering Division, Vol. 104, No. 12, pp. 1465-1488 (1978).
40. Randolph, M.F., and Wroth, C.P., “Application of the failure state in undrained simple shear to the shaft capacity of driven piles,” Géotechnique, Vol. 31, No. 1, pp. 143-157 (1981).
41. Richart, D.W., “Dynamic effect of pile installations on adjacent structures,” NCHRP Synthesis Report 253, Washington, U.S.A. (1997).
42. Seed, H.B., and Reese, L.C., “The action of soft clay along friction piles,” Transaction of ASCE, Vol. 122, No. 2882, pp. 731-764 (1957).
43. Takemiya, H., and Fujiwara, A., “Wave propagation/impediment in a soil stratum and wave impeding block (WIB) measured for SSI response reduction,” Soil Dynamics and Earthquake Engineering, Vol. 113, pp. 49-61 (1994).
44. Xia, H., Zhang, N., and Cao, Y.M., “Experimental study of train-induced vibrations of environments and buildings,” Journal of Sound and Vibration, Vol. 280, No. 3-5, pp. 1017-1029 (2005).
45. Takemiya, H., “Field vibration mitigation by honeycomb WIB for pile foundation of a high-speed train viaduct,” Soil Dynamics and Earthquake Engineering, Vol.24, No.1, pp.69-87 (2004).
46. Terzaghi, K., Theoretical Soil Mechanics, John Wiley and Sons, New York (1943).
47. Vesic, A.S., Design of pile foundation, Synthesis of Highway Practice 42, National Cooperative Highway Research Program, Transportation Research Board, National Research Council, Washington D.C. (1977).
48. Theissen, J.R., and Wood, W.C., “Vibration in structures adjacent to pile driving,” Dames and Moore Engineering, Bulletin, No. 60, pp. 4-21 (1982).
49. Tomlinson, M.J., “Some Effects of pile driving on skin friction,” Proceedings of the Conference on Behavior of Piles, London, U.K., pp. 107-114 (1971).
50. Verhas, H.P., “Prediction of the propagation of train-induced ground vibration,” Journal of Sound and Vibration, Vol. 66, pp. 371-376 (1979).
51. Wiss, J.F., “Construction vibrations: state-of-the-art,” Journal of Geotechnical Engineering Division, ASCE, Vol. 107, No. GT2 (1981).
52. Woods, R.D., and Jedele, L.P., “Energy attenuation from construction vibrations,” Vibration Problems in Geotechnical Engineering, pp. 229-246 (1985).
指導教授 張惠文(Huei-wen Chang) 審核日期 2015-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明