博碩士論文 102322059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.238.190.82
姓名 陳政諭(Cheng-yu Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 森林上方粗糙次層之風洞實驗
(Wind Tunnel Experiment of Roughness Sublayer above the Plant Canopy)
相關論文
★ 定剪力流中二維平板尾流之風洞實驗★ 以大渦紊流模式模擬不同流況對二維方柱尾流之影響
★ 矩形建築物高寬比對其周遭風場影響之研究★ 台灣地區風速機率分佈之研究
★ 邊界層中雙棟並排矩形建築之表面風壓量測★ 排放角度與邊牆效應對浮昇射流影響之實驗研究
★ 低層建築物表面風壓之實驗研究★ 圓柱體形建築物表面風壓之實驗研究
★ 最大熵值理論在紊流剪力流上之應用★ 應用遺傳演算法探討海洋放流管之優化方案
★ 均勻流中圓柱體形建築物表面風壓之風洞實驗★ 大氣與森林之間紊流流場之風洞實驗
★ 以歐氏-拉氏法模擬煙流粒子在建築物尾流區中的擴散★ 以HHT分析法研究陣風風場中建築物之表面風壓
★ 以HHT時頻分析法研究陣風風場中物體所受之風力★ 風吹落物之軌跡預測模式與實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大氣與森林之間的動量、熱量和質量(水汽、二氧化碳、氧氣、種子、花粉等)的傳輸不僅會影響到植物的呼吸與光合作用,亦對森林區的蒸發散和地表附近的微氣候有重大的影響,為全球環境的變遷中重要的一環。本研究以一系列的風洞實驗來探討森林樹冠層附近的紊流風場,實驗中放置模型樹於風洞中的紊流邊界層之中,並改變樹木的排數,在不同的下風距離量測平均風速和紊流參數,以瞭解紊流流場的相關性,以釐清單排與雙排樹的尾流與多排樹木的森林的粗糙次層之間的影響。本研究也探討了樹木孔隙率與阻力係數之間的關係,並量測不同孔隙率障礙物之下風處建築物表面的壓力係數,探討樹木所產生的遮蔽效應。
摘要(英) The turbulence transport of momentum, heat and mass (water vapor, CO2, O2, seed and pollen) between the plant canopies and atmosphere not only affect the photosynthesis, evaporation and transpiration of plants, but also influence the micro-meteorology of forest area. This study used wind tunnel experiments to investigate the turbulent flow above the plant canopy and the wake flow of the canopy. Mean velocity profiles and turbulence parameters are measured at several down-wind distances. The friction velocity u** calculated from the logarithmic profile and the friction velocity u*c computed from the Reynolds stress are in good agreement. This study also investigates the influence of porosity on the drag coefficient and the friction factor of the canopy. The experimental results indicate that the drag coefficient is much larger than the friction factor.
關鍵字(中) ★ 風洞實驗
★ 樹冠層
★ 森林流場
★ 粗糙次層
關鍵字(英) ★ Wind tunnel experiment
★ Mixing layer flow
★ Plant canopy
★ Roughness Sublayer
論文目次 Abstract I
Content III
Table captions V
Figure captions IV
1. Introduction 1
2. Experimental setup 4
3. Results and discussion 5
3.1 Approaching flow 5
3.2 Wake flows 6
3.3 Mixing layer flow 7
3.4 Drag coefficients 9
3.5 Pressure coefficients 9
4. Conclusions 11
References 12
Table 15
Figure 17
參考文獻 [1] Amiro, B.D. 1990, Drag coefficients and turbulence spectra within three boreal forest canopies, Boundary-Layer Meteorol. 52, 3, 227-246.
[2] Banarjee, T., Katul, G.G. Fontan, S. Poggi, D. and M. Kumar. 2013, Mean flow near edges and within cavities situated inside dense canopies, Boundary-Layer Meteorol. 49, 14-41.
[3] Belcher S.E., Jerram N., and Hunt J.C.R. 2003, Adjustment of a turbulent boundary layer to a canopy of roughness elements, J. Fluid Mech. 488, 369-398.
[4] Lalic, B., Mihailovic, D.T. Rajkovic, B., Arsenic, I.D. and Radlovic, D. 2003, Wind profile within the forest canopy and in the transition layer above it. Environmental Modeling & Software, 18, 943-950.
[5] Boldes, U., Colman, J. and M. Di Leo J. 2001, Field study of the flow behind single and double row herbaceous windbreaks. J. Wind Engineering and Industrial Aerodyn. 89 (7-8), 665-687.
[6] Belcher S.E., Harman, I.N. and Finnigan, J. J. 2012, The wind in the willows: Flows in forest canopies in complex terrain. Ann. Rev. Fluid Mech. 44, 479-504.
[7] Brunet, Y., Finnigan, J. J. and Raupach M. R. 1993, A wind tunnel study of air flow in waving wheat: single-point velocity statistics, Boundary-Layer Meteorol. 81, 95-132.
[8] Chu, C.R., Parlange, M.B., Katul, G.G. and Albertson, J.D. 1996, Probability density functions of turbulent velocity and temperature in the atmospheric surface layer, Water Resources Research, 32, 6, 1681-1688.
[9] Cionco, R.M. 1965, A mathematical model for air flow in a vegetative canopy. Journal of Applied Meteorology, 4, 517-522.
[10] Coppin, P.A., Raupach, M.R. and Legg, B.J. 1986, Experiments on scalar dispersion within a source. Boundary-Layer Meteorol. 35, 167-191.
[11] Chen, Z. Jiang, C. and Nepf, H. 2013, Flow adjustment at the leading edge of a submerged aquatic canopy, Water Resources Research, 49, 5537-5551.
[12] Collins, D.C. and Avissar, R. 1994, An evaluation with the Fourier amplitude sensitivity test (FAST) of which land-surface parameters are of greatest importance in atmospheric modeling. Journal of Climate,7(5), 681-703.
[13] Dumbauld, R.K. and Cionco, R.M. 1985, A method for characterizing turbulence and wind speed profiles within and above vegetative canopies. 17th Conference Agricultural and Forest Meteorology and 7th Conference Biometeorology and Aerobiology, 120-123.
[14] Finnigan, J. J. 1979, Turbulence in waving wheat II. Structure of momentum transfer. Boundary-Layer Meteorol. 16, 213-236.
[15] Finnigan, J. J. 2000, Turbulence in plant canopies. Ann. Rev. Fluid Mech. 32, 519-571.
[16] Finnigan, J. J. and Shaw, R. H. 2000, A wind-tunnel study in wheat: an EOF analysis of the structure of the large-eddy motion. Boundary-Layer Meteorol. 96, 211-255.
[17] Gardiner, B. A. 1994, Wind and wind forces in a plantation spruce forest. Boundary-Layer Meteorol. 67, 161-186.
[18] Ghisalberti, M. and Nepf, H.M. 2002, Mixing layers and coherent structures in vegetated aquatic flow. J. Geophys. Research, 107, C2, 1-11.
[19] Irvine, M. R., Gardiner, B. A. and Hill, M. K. 1997, The evolution of turbulence across a forest edge. Boundary-Layer Meteorol. 84, 467-496.
[20] Katul, G. G., Parlange, M.B. and Chu, C.R. 1994, Intermittency, local isotropy and non-Gaussian statistics in atmospheric surface layer turbulence, Physics of Fluids, 6 (7), 2480-2492.
[21] Katul, G. G., Poggi, D. Cava, D. and Finnigan, J.J. 2006, The relative importance of ejections and sweeps to momentum transfer in the atmospheric boundary layer, Boundary-LayerMeteorol. 120, 367-375.
[22] Katul, G. G. and Chu, C. R. 1998, A theoretical and experimental investigation of energy-containing scales in the dynamic sublayer of boundary layer, Boundary-Layer Meteorol. 86 (2), 279-312.
[23] Katul, G. G., Mahrt, L. Poggi, D., and Sanz, C. 2004, One- and two-equation models for canopy turbulence. Boundary-Layer Meteorol. 113, 81-109.
[24] Massman, W. 1987, A comparative study of some mathematical models of the mean wind structure and aerodynamic drag of plant canopies. Boundary-Layer Meteorol. 40, 179-197.
[25] Mihailovic, D.T., Lalic, B. Rajkovic, B. and Arsenic, I. 1999, A roughness sublayer wind profile above non-uniform surface. Boundary-Layer Meteorol. 93, 425-451.
[26] Poggi, D., Katul, G. G. and Albertson, J. D. 2004, Momentum transfer and turbulent kinetic energy budgets within a dense model canopy. Boundary-Layer Meteorol. 111, 589-614.
[27] Poggi, D., Katul, G.G., and Albertson J.D. 2004, A note on the contribution of dispersive fluxes to momentum transfer within canopies, Boundary-Layer Meteorol. 111(3), 615-621.
[28] Poggi, D., Katul, G. and Vidakovic, B. 2011, The role of wake production on the scaling laws of scalar concentration fluctuation spectra inside dense canopies. Boundary-Layer Meteorol. 139, 83-95.
[29] Pope, S.B. 2000, Turbulent Flows, Cambridge University Press, UK.
[30] Raupach, M.R., Coppin, P.A., and Legg, B.J. 1986, Experiments on scalar dispersion within a model plant canopy. Part I: The turbulence structure. Boundary-Layer Meteorol. 35, 21-52.
[31] Rominger, J. and Nepf, H. 2011, Flow adjustment and interior flow associated with a rectangular porous obstruction, J. Fluid Mech. 680, 636-659.
[32] Raupach, M.R, Antonia, R. A., and Rajagopalan, S. 1991, Rough-wall turbulent boundary layers. Applied Mechanics Review, 44, 1-25.
[33] Raupach, M.R. 1992 Drag and drag partition on rough surfaces. Boundary-Layer Meteorol. 60, 375-385.
[34] Shaw, R.H., Brunet, Y., Finnigan, J.J., and Raupach, M.R. 1995, A wind tunnel study of air flow in waving wheat: Two-point velocity statistics. Boundary-Layer Meteorol. 76, 349-376.
[35] Shaw, R.H., Tavanger, J. and Ward, D.P. 1983, Structure of the Reynolds stress in canopy layer. J. Clim. Applied Meteorol. 22, 1922-1931.
[36] Schwartz, R.C., Fryrear, D.W., Harris, B.L., Bilbro, J.D. and Juo, A.S.R. 1995, Mean flow and shear stress distributions as influenced by vegetative windbreak structure. Agri. and Forest Meteorol. 75, 1-22.
[37] White, B. and Nepf, H.M. 2003, Scalar transport in random cylinder arrays at moderate Reynolds number. J. Fluid Mech. 487, 43-79.
[38] 方偉德 2004, 大氣與森林之間紊流流場之風洞驗,中央大學土木系碩士論文
指導教授 朱佳仁(Chia-Ren Chu) 審核日期 2015-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明