博碩士論文 102322090 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.219.137.74
姓名 蔡長興(Chang-Xing Tsai)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 相對門檻優化永久散射體干涉雷達技術於地表變形偵測之應用
(Using Relative Thresholds to Investigate Surface Deformation by Persistent Scatterer InSAR)
相關論文
★ 利用數個參考站模式化電離層影響量以進行GPS衛星測量★ 白化濾波應用於GPS動態衛星測量之研究
★ 應用數值地型於立體空載SAR影像之分析★ 消去GPS相位模稜OTF相對定位之研究
★ 應用地形物元於衛載SAR影像匹配之研究★ 參數解關聯應用於GPS雙主站相位模稜求解
★ 衛載SAR地塊影像匹配之參數最佳化★ 最小二乘過濾法應用於動態GPS衛星定位平穩性之研究
★ GPS即時動態定位最佳化演算法比較研究★ Radarsat-1 SAR影像最小二乘匹配之研究
★ 方差與協方差分量於Radarsat-1地塊影像匹配之研究★ 率定GPS接收器時間偏差對高程定位精度提升之研究
★ 分塊輻射參數調整應用於不同來源影像之匹配與套合★ 利用多參考站模式化相對對流層天頂向延遲以進行GPS動態定位
★ 應用時間序列分析於GPS多路徑效應之研究★ 研究不同資源衛星影像之匹配與套合
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 永久散射體干涉合成孔徑雷達 (PSInSAR)是一種提供長期觀測地表變形的方法。它解決了差分干涉合成孔徑雷達技術用於長時間觀測時導致同調性降低,進而使誤差上升的問題。此方法是藉由尋找影像中訊號穩定的點,利用該點特性計算地表變形率將會使準確性上升。然而在此方法中,是使用一固定值當作門檻值,而門檻值之設置相當依靠經驗。因此,影像中若有同調性較低之影像將會影響所有的圖像,使影像處理者難以選擇。而經過分析合成孔徑雷達圖像,影像同調性分布近似於常態分布。經過一系列的統計檢驗,確認特性後,使用該特性及能排除影像中相對不穩定的點來獲得永久散射體。使用此方法可以自動化獲得門檻和該門檻的信心水準,跟原方法比較可以獲得較為客觀及可信之結果。另一方面,所計算出的門檻值不受各影像間差異(如季節)影響,使得成果有一定程度的提升。另外該門檻值可通過調整相關門檻中使用者所需之信心水準,以滿足不同區域的研究。
摘要(英) Permanent scatterers (PS) InSAR is a method providing long-term observation radar surface deformation. It resolved the problem that InSAR technique is used for a long time observing. This method is looking for stable points. After finding the PS points and calculating the phase of PS points, the information can be calculated to the deformation speed. However, in this method, the threshold setting is dependent on experience and for a given value. Therefore, the uneven quality of particular image will impact all the images and make users hard to choose.
With analyzing synthetic aperture radar images, we find that the image coherence distribution is similar to normal distribution. After the distribution identified, the threshold could be set by the statistical property through excluding the points within the confidence interval, and the remaining points are what we need. This method can give an objective and credible result without manual adjusting. We don’t need to get involved through the experience of setting and other processing experience. On the other hand, the calculated threshold individual with each image will not be affected by other images (like seasons), but also effectively solve the problem that image quality is uneven. By the way, the threshold can be regulated by changing the confidence level to satisfy the different research area.
關鍵字(中) ★ 相對門檻
★ 永久散射體
★ 干涉合成孔徑雷達
關鍵字(英) ★ Relative Threshold
★ Persistent Scatterer
★ InSAR
論文目次 中文摘要.......................................i
Abstract......................................ii
誌謝.........................................iii
目錄..........................................iv
圖目錄........................................vi
表目錄......................................viii
第一章、緒論...................................1
第二章、文獻回顧...............................5
2-1合成孔徑雷達的發展..........................5
2-2干涉合成孔徑雷達的發展......................8
2-3差分干涉雷達(DInSAR)發展...................17
第三章、散射體干涉技術........................22
3-1永久散射體干涉合成孔徑雷達(PSInSAR)........23
3-2影像對選擇.................................25
3-3同調性計算.................................25
3-4相對門檻(Relative threshold)...............27
3-5選取PS點...................................31
3-6建立Delaunay三角網.........................32
第四章、實驗結果分析..........................37
4-1 ALOS衛星..................................37
4-2使用資料...................................39
4-3永久散射體結果.............................45
4-4主影像選擇比較.............................47
4-5永久散射點數量比較.........................51
4-6影像張數影響比較...........................52
4-7權重影響...................................53
4-8驗證比較...................................53
第五章、結論與建議............................56
參考文獻......................................58
參考文獻 陳鴻緒,2001,「使用ERS資料與SAR干涉技術在臺灣地區求定DEM之實務探討」,碩士論文,國立成功大學,台南。

黃郁棠,2012,「利用統計方法改善永久散射體干涉雷達技術於地表變形偵測之應用」,碩士論文,國立中央大學,桃園。

楊佳祥,2011,「An Improved PS-InSAR Approach」,碩士論文,國立成功大學,台南。

蕭逸凡,2010,「永久散射體雷達干涉技術應用於地表變遷偵測」,碩士論文,國立中央大學,桃園。

Basilico, M., Ferretti, F., Novali, F., Prati, C., and Rocca F., 2004, “Advances in Permanent Scatterers Analysis: Semi and Temporary PS,” Proc. Eur. Conf. Synthetic Aperture Radar, Ulm, Germany May 25–27 pp.349–350.

Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E., 2002, “A New Alforithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, No. 11, pp. 2375–2383, doi: 10.1109/TGRS.2002.803792.

Chang, C. P., Wang, C. T., Chang, T. Y., Chen, K. S., Liang, L. S., Pathier, E., and Angelier, J., 2004, “Application of SAR Interferometry to a Large Thrust Deformation: the 1999 Mw=7.6 Chichi Earthquake in Central Taiwan,” Geophysical Journal International, Vol. 159, No. 50, pp. 9–16, doi: 10.1111/j.1365-246X.2004.02385.x.

Chen, C. W., and Zebker, H. A., 2000,“Network Approaches to Two-dimensional Phase Unwrapping: Intractability and Two New Algorithms,” Journal of the Optical Society of America A, Vol. 17, No. 3, pp. 401–414, doi: 10.1364/JOSAA.17.000401.

Ferretti, A., Prati, C., and Rocca, F., 2000, “Nonlinear Subsidence Rate Estimation Using Permanent Sactterers in Differential SAR Interferometry,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 5, pp. 2202–2212, doi: 10.1109/36.868878.

Ferretti, A., Prati, C., and Rocca, F., 2001, “Permanent Scatterers in SAR Interferometry,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 1, pp. 8–20, doi: 10.1109/IGARSS.1999.772008.

Fruneau, B., and Deffontaines, B., 2006, “A Growing Structure near the Deformation Front in SW Taiwan Deduced from SAR Interferometry and Geodetic Observation,” Journal of Geophysical Research, Vol. 33, No. 12(L12305), 5 pages, doi: 10.1029/2005GL025613.

Gabriel, A. K., Goldstein, R. M., and Zebker, H. A., 1989, “Mapping Small Elevation Changes over LargeAreas: Differential Radar Interferometry,” Journal of Geophysical Research, Vol. 94, No. 7, pp. 9183–9191, doi: 10.1029/JB094iB07p09183.

Gens, R., and van Genderen, J. L., 1996, “SAR Interferometry-issues, Techniques, Applications,” International Journal of Remote Sensing, Vol. 17, No. 10, pp. 1803–1835, doi: 10.1080/01431169608948741.

Goldstein, R.M., 1965, Preliminary Venus Radar Results, Radio Science, Vol. 69D, pp. 1090–1092.

Graham, L. C., 1974, “Synthetic Interferometric Radar for Topographic Mapping,” Proceedings of the IEEE, Vol. 62, No. 6, pp. 763–768, doi: 10.1109/PROC.1974.9516.

Hagberg. J. O.,Ulander.L. M. H.,Askne.J., 1995,“Repeat-pass SAR interferometry over forested terrain”,IEEE Transactions on Geoscience and Remote Sensing, Vol. 33,No.2,pp.331–340.

Henderson, F. M., and Lewis, A. J., 1998, Principles and Applications of Imaging Radar, John Wiley, New York, USA.

Hooper, A., Segall, P., and Zebker, H., 2007, “Persistent Scatterer Interferometric Synthetic Aperture Radar for Crustal Deformation Analysis, with Application to Volcán Alcedo, Galápagos,” Journal of Geophysical Research, Vol. 112, B07407, 21 pages, doi: 10.1029/2006JB004763.

Hu, B.,Wang, H. -S.,Jiang, L. -M., 2013,“Monitoring of the reclamation-induced ground subsidence inMacao (China) using the PSInSAR technique,”Journal of Central South University of Technology,Vol. 20, pp.1039–1046.

Leberl,F., 1990, “Radargrammetric Image Processing”,Artech House, Norwood, Massachusetts, USA.

Lillesand, T. M., Kiefer, R. W., and Chipman, J. W.,2007,Remote Sensing and Image Interpretation, John Wiley, New York, USA.

Mora, O., Mallorquí, J. J., and Broquetas, A., 2003, “Linear and Nonlinear Terrain Deformation Maps From a Reduced Set of Interferometric SAR Images,” IEEE Transactions on Geosciences and Remote Sensing, Vol. 41, No. 10, pp. 2243–2253, doi: 10.1109/TGRS.2003.814657.

Rabus, B., Eineder, M., Roth, A., and Bamler, R., 2003, “The Shuttle Radar Topography Mission—a New Class of Digital Elevation Models Acquired by Spaceborne Radar,” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 57, No. 4, pp. 241–262, doi: 10.1016/S0924-2716(02)00124-7.

Rogers, A. E. E., Ingalls, R. P., 1969, ―Venus: Mapping the Surface Reflectivity by Radar Interferometry,Science, Vol. 165, No. 3895, pp. 797–799.

Xia Y., Kaufmann, H., and Guo, X. F., 2004, “Landslide Monitoring in the Three Gorges Area Using D-InSAR and Corner Reflector,” Photogrammetric Engineering & Remote Sensing, Vol. 70, No. 10, pp. 1167–1172.

Zebker, H. A., 2000, “Studying the Earth with Interferometric Radar,” Computer in Science and Engineering, Vol. 2, No.3,pp. 52–60, doi: 10.1109/5992.841796.

Zebker, H. A., and Goldstein, R. M., 1986, ―Topographic Mapping from Interferometry Synthetic Aperture Radar Observations,‖ Journal of Geophysical Research, Vol. 91, No. 5, pp. 4993–4999.

Zebker, H. A., Werner, C. L.,Rosen, P. A., and Hensley, S., 1994, “Accuracy of Topographic Maps Derived from ERS-1 Interferometric Radar,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 4, pp. 823–836, doi: 10.1109/36.298010.

Zhang, L., Ding, X., Lu, Z. 2011, “Modeling PSInSAR Time Series Without Phase Unwrapping,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 1, pp. 547–556, doi: 10.1109/TGRS.2010.2052625.

Zisk, S. H., 1972, “A New Earth-based Radar Technique for the Measurement of Lunar Topography,” Moon, Vol. 4, No. 3–4, pp. 296–306, doi: 10.1007/BF00561997.



指導教授 吳究(Joz Wu) 審核日期 2015-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明