博碩士論文 102322103 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.142.197.198
姓名 陳玥廷(YUEH-TING, CHEN)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 材料組成比例對超高性能纖維混凝土之工作性與力學性質之影響
相關論文
★ 耦合結構牆地震行為與性能化設計法★ 各種載重作用下neo-Hookean材料微孔動態分析
★ 劉氏保群算法於高雷諾數Burgers方程之應用及探討★ 彈性材料圓孔非對稱變形近似解研究
★ HAF描述含圓孔橡膠材料三軸壓縮變形的誤差分析★ 國立中央大學-HAF描述圓形微孔非對稱變形的誤差計算
★ 形狀記憶合金於抗震RC耦合牆系統之初步研究★ 多微孔橡膠材料受拉變形平面應力分析
★ 非線性彈性固體微孔變形特性★ 綠色高韌性纖維混凝土(Green-ECC)本土化發展與自癒合能力之研究
★ 鋼絲網加勁高韌性纖維水泥基複合材料之力學行為研究★ 鋼絲網加勁高韌性纖維混凝土於RC梁構件剪力補強研究
★ 高韌性纖維混凝土(ECC)之材料配比及添加物對收縮及力學性質影響★ 耦合結構牆受近斷層地震作用之行為
★ 高爐石高韌性纖維混凝土(ECC)之開發與自癒合研究★ 搜尋週期為四年時使用SDICAE作強震預測的最佳精度設定
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 超高性能纖維混凝土(Ultra high performance fiber reinforced concrete)為一種新型的水泥基工程材料,較傳統混凝擁有強化的強度、耐久性與韌性行為,然而材料之粒徑大小及不同形式的纖維皆會影響超高性能纖維混凝土之工作性,使得拌合與澆置困難,進而影響結構構件之性能。

本文以研究超高性能纖維混凝土之工作性為旨,討論改變混凝土配比中矽砂、石英粉末與鋼纖維使用量,對工作性與力學性質的影響。實驗結果顯示,提高矽砂與石英粉末之使用量,皆能改善超高性能纖維混凝土之工作性,但會降低漿體帶動纖維之能力,而添加少量的鋼纖維能提升混凝土之工作性,但當纖維量提高為2%時,會造成工作性損失。

力學性質的部分,本研究中所有配比之壓力強度皆可達120 MPa,開裂強度約為5 MPa~8 MPa,而添加2%纖維之極限拉力強度為6 MPa~10 MPa,達極限拉應力時之應變最高可達0.88%,超高性能纖維混凝土之壓力強度會隨石英粉末與矽砂的比例增加而降低,加入鋼纖維亦會使壓力強度下降,但添加2%纖維時之強度損失程度較僅使用1%纖維時低,在纖維含量較高時,石英粉末含量的增加,能明顯增強開裂強度與極限強度,且有明顯的應變硬化行為,顯示石英粉末能提高鋼纖維之效用,而矽砂含量對超性能混凝土之拉力強度之影響則十分有限,隨著矽砂量的提高,發生應變硬化行為之機會降低,顯示提高矽砂量會降低纖維之效用。

研究結果認為,提高石英粉末比例,除了工作性佳之外,拉力性能之表現亦十分優異,僅對壓力強度造成些微損失,發展出在不大幅影響力學性能之前提下,能提供較好工作性之超高性能纖維混凝土。
摘要(英) Ultra high performance fiber reinforced concrete (UHPFRC) is a new cement-based material. It is more durable and has a higher strength than traditional concrete. The workability of UHPFRC will influence by the particle size and the type of steel fiber, cause the mechanical performance unstable.

This study investigates the effect of varying percentages of silica sands and quartz powders on the workability and mechanical properties of the UHPFRC. The results show that increasing the amount of usage of silica sands and quartz powders is able to improve the workability of UHPFRC. But it make cause the loss of the fiber distribution ability. Adding a small amount of steel fiber can improve the workability of UHPFRC, but when the amount of fiber increase of 2%, will result in the loss of workability.

In this research, the compressive stress of UHPFRC is up to 120 MPa. The first-cracking stress and the ultimate tensile stress with 2% fiber is about 5 MPa~8 MPa and 6 MPa~10 MPa. The strain at ultimate tensile stress is up to 0.88%. The compressive stress of UHPFRC will decreased with the proportion of silica sands and quartz powders increase. Adding steel fiber also cause the compressive stress loss, and the UHPFRC with 1% fibers will loss more strength than which that with 2% fibers. At higher fiber content and increased content of silica powder, it can enhance first-cracking stress and ultimate tensile stress significantly with strain hardening behavior, it shows that quartz powders can improve the effectiveness of steel fibers. On the other hand, the effect of silica sand content on tensile stress is limited. With the increase of the amount of silica sand, the probability of strain hardening is reduced, show that silica sands will reduce the effectiveness of fibers.

The study concluded that increase the proportion of quartz powders not only improve the workability, but also enhance the toughness of UHPFRC. Developed the UHPFRC that with great workability and mechanical performance successfully.
關鍵字(中) ★ 超高性能纖維混凝土
★ 工作性
關鍵字(英)
論文目次 摘要 i
Abstract iii
誌謝 iv
目錄 vi
圖目錄 x
表目錄 xiii
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究方法 2
1.4 論文架構 2
第二章 文獻回顧 4
2.1 超高性能纖維混凝土之發展概述 4
2.2 超高性能纖維混凝土之組成材料 6
2.2.1 卜特蘭水泥 6
2.2.2 礦粉摻料 7
2.2.2.1 矽灰(Silica fume) 8
2.2.2.2 爐石(Granulated blast furnace slag) 9
2.2.2.3 飛灰(Fly ash) 9
2.2.2.4 偏高嶺土(Metakaolin) 9
2.2.2.5 石英粉末(Quartz powder) 10
2.2.3 粒料 10
2.2.4 鋼纖維 11
2.2.5 強塑劑(Superplasticizers) 11
2.3 超高性能纖維混凝土之工作性 12
2.3.1 賓漢流體 12
2.3.2 工作性相關試驗 13
2.3.2.1 坍流度試驗與T50cm試驗 14
2.3.2.2 J型環試驗 15
2.3.2.3 V型漏斗與V型漏斗T5minutes試驗 16
2.3.2.4 L型箱試驗 17
2.3.2.5 U型箱試驗 18
2.3.2.6 填充箱試驗 19
2.3.2.7 Orimet流速計試驗 20
2.3.2.8 GTM穩定性過篩試驗 21
2.3.3 影響工作性之因素 22
2.4 超高性能纖維混凝土之力學性質 23
2.4.1 強度 23
2.4.2 韌性 24
2.4.3 影響力學性質之因素 28
第三章 試驗計畫 31
3.1 試驗概述 31
3.2 試驗材料 31
3.3 試體參數與編號 35
3.4 試體製作 37
3.5 試驗內容與方法 37
3.5.1 新拌混凝土試驗 37
3.5.1.1 迷你坍流度試驗 38
3.5.1.2 流度試驗 38
3.5.1.3 坍流度試驗 39
3.5.1.4 纖維分佈試驗 40
3.5.1.5 J型環試驗 41
3.5.1.6 V型漏斗試驗 42
3.5.2 硬固混凝土試驗 43
3.5.2.1 直接壓力試驗 43
3.5.2.2 直接拉力試驗 44
第四章 結果與討論 46
4.1 新拌混凝土之工作性試驗結果 46
4.1.1 迷你坍流度與流度試驗 46
4.1.2 坍流度試驗 49
4.1.3 纖維分佈試驗 51
4.1.4 J型環試驗 52
4.1.5 V型漏斗試驗 54
4.2 硬固混凝土之力學試驗結果 56
4.2.1 直接壓力試驗 56
4.2.2 直接拉力試驗 59
第五章 結論與建議 72
參考文獻 77
附錄 84
參考文獻 [1] 闕辰宇, 高強度鋼筋加勁之超高性能纖維混凝土懸臂梁於反覆載重作用下之撓曲行為, 桃園縣, 國立中央大學土木工程學系, 碩士論文; 2015。
[2] ACI CT- 13. ACI Concrete Terminology. American Concrete Institute. U.S.A.; 2013.
[3] Ranade R, Li VC, Stults MD, Heard WF, Rushing TS. Composite Properties of High-Strength, High-Ductility Concrete. ACI Materials Journal. 2013;110(4).
[4] Li VC, Ranade R, Stults MD, Rushing TS, Heard WF, Cummins TK Strain hardening brittle matrix composites with high strength and high tensile ductility. United States: Patent Application Publication; Jan 2013.
[5] Buitelaar P. Heavy reinforced ultra high performance concrete. Proceedings of the Int Symp on UHPC, Kassel, Germany. 2004:25-35.
[6] Wang DH, Shi CJ, Wu ZM, Xiao JF, Huang ZY, Fang Z. A review on ultra high performance concrete: Part II. Hydration, microstructure and properties. Construction and Building Materials. Oct 2015;96:368-377.
[7] Richard P, Cheyrezy M. Composition of reactive powder concretes. Cement and concrete research. 1995;25(7):1501-1511.
[8] Wille K, Kim DJ, Naaman AE. Strain-hardening UHP-FRC with low fiber contents. Materials and Structures. 2011;44(3):583-598.
[9] Hung CC, El-Tawil S. Hybrid Rotating/Fixed-Crack Model for High-Performance Fiber-Reinforced Cementitious Composites. Aci Materials Journal. 2010;107(6):568-576.
[10] Hung C-C, Yen W-M. Experimental Evaluation of Ductile Fiber Reinforced Cement-based Composite Beams Incorporating Shape Memory Alloy Bars. Procedia Engineering. 2014;79:506-512.
[11] Hung CC, El-Tawil S. Seismic Behavior of a Coupled Wall System with HPFRC Materials in Critical Regions. Journal of Structural Engineering-Asce. 2011;137(12):1499-1507.
[12] Hung CC, Li SH. Three-dimensional model for analysis of high performance fiber reinforced cement-based composites. Composites Part B-Engineering. 2013;45(1):1441-1447.
[13] Hung CC, Su YF, Yu KH. Modeling the shear hysteretic response for high performance fiber reinforced cementitious composites. Construction and Building Materials. 2013;41:37-48.
[14] Hung CC, Su YF. On modeling coupling beams incorporating strain-hardening cement-based composites. Computers and Concrete. 2013;12(4):565-583.
[15] Hung C-C, Chueh C-Y. Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar. Engineering Structures. 2016;122:108-120.
[16] Hung C, Tseng B, You W, Huang J. Effectiveness of using high performance fiber reinforced concrete in coupled structural walls for improving seismic performance. Structural Engineering, Chinese Society of Structural Engineering. 2011;26(4):3-16.
[17] Yu R, Spiesz P, Brouwers HJH. Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). Cement and Concrete Research. 2014;56:29-39.
[18] Lin W, Quek S. Tensile Behavior of Twisted Steel Fiber Reinforced Cementitious Composite. 32nd Conference on Our World in Concrete & Structures. Singapore; 28 - 29 August. 2007.

[19] Wille K, Naaman AE, El-Tawil S, Parra-Montesinos GJ. Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing. Materials and structures. 2012;45(3):309-324.
[20] Shi C, Wu Z, Xiao J, Wang D, Huang Z, Fang Z. A review on ultra high performance concrete: Part I. Raw materials and mixture design. Construction and Building Materials. 2015;101, Part 1:741-751.
[21] Oneil EF, III. On engineering the microstructure of high-performance concretes to improve strength, rheology, toughness, and frangibility Ph.D., Northwestern University Civil and Environmental Engineering; December 2008.
[22] 黄兆龍, 高性能混凝土理論與實務, 詹氏書局; 2003。
[23] 顏聰, 土木材料; 2006。
[24] Strunge J, Deuse T. Special cements for ultra high performance concrete. Second International Sympo-sium on Ultra High Performance Concrete. Germany. Kassel. 2008. 61-68.

[25] 張建智、黃然、郭鶴松, 矽灰混凝土在港灣工程上之應用, 中華民國第十三屆海洋工程研討會, 台灣; 1991。
[26] Shi C, Wang D, Wu L, Wu Z. The hydration and microstructure of ultra high-strength concrete with cement–silica fume–slag binder. Cement and Concrete Composites. 2015;61:44-52.
[27] Yazıcı H, Yardımcı MY, Yiğiter H, Aydın S, Türkel S. Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag. Cement and Concrete Composites. 2010;32(8):639-648.
[28] Yazıcı H, Yiğiter H, Karabulut AŞ, Baradan B. Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete. Fuel. 2008;87(12):2401-2407.
[29] Yazıcı H, Yardımcı MY, Aydın S, Karabulut AŞ. Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes. Construction and Building Materials. 2009;23(3):1223-1231.
[30] Hung C-C, Su Y-F. Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations. Construction and Building Materials. 2016;118:194-203.
[31] Tafraoui A, Escadeillas G, Lebaili S, Vidal T. Metakaolin in the formulation of UHPC. Construction and Building Materials. 2009;23(2):669-674.
[32] Benezet JC, Benhassaine A. The influence of particle size on the pozzolanic reactivity of quartz powder. Powder Technology. 1999;103(1):26-29.
[33] Yang SL, Millard SG, Soutsos MN, Barnett SJ, Le TT. Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fibre reinforced concrete (UHPFRC). Construction and Building Materials. 2009;23(6):2291-2298.
[34] ASTM C494 / C494M-15a. Standard Specification for Chemical Admixtures for Concrete. ASTM International. West Conshohocken, PA; 2015.
[35] Schröfl C, Gruber M, Plank J. Preferential adsorption of polycarboxylate superplasticizers on cement and silica fume in ultra-high performance concrete (UHPC). Cement and Concrete Research. 2012;42(11):1401-1408.
[36] Laskar A, Talukdar S. Rheology of steel fiber reinforced concrete. Asian Journal of Civil Engineering (Building and Housing). 2008;9(2):167-177.
[37] 蘇彥方, 綠色高韌性纖維混凝土(Green-ECC)本土化發展與自癒合能力之研究, 桃園縣, 國立中央大學土木工程學系, 碩士論文; 2014。
[38] EFNARC. Specification and guidelines for self-compacting concrete. UK; February 2002.
[39] JSCE. Recommendation for self-compacting concrete. Concrete Engineering Series 31. August 1999.
[40] Duval R, Kadri EH. Influence of Silica Fume on the Workability and the Compressive Strength of High-Performance Concretes. Cement and Concrete Research. 1998;28(4):533-547.
[41] Benaicha M, Jalbaud O, Hafidi AA, Burtschell Y. Rheological and Mechanical Characterization of Fiber-Reinforced Self-Compacting Concrete. International Journal of Engineering and Innovative Technology (IJEIT). 2013;2(7):2277-3754.
[42] Wille K, El-Tawil S, Naaman AE. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. Cement & Concrete Composites. 2014;48:53-66.
[43] Wu H-C, Li VC. Trade-off between strength and ductility of random discontinuous fiber reinforced cementitious composites. Cement and Concrete Composites. 1994;16(1):23-29.
[44] 鍾添平, 添加鋼纖維與矽灰對水泥基複合材料力學性質影響之探討, 基隆市, 國立臺灣海洋大學河海工程學系, 碩士論文; 2007。
[45] Suwannakarn SW. Post-cracking characteristics of high performance fiber reinforced cementitious composites Ph.D., Michigan University Civil Engineering; 2009.
[46] Chan Y-W, Chu S-H. Effect of silica fume on steel fiber bond characteristics in reactive powder concrete. Cement and Concrete Research. 2004;34(7):1167-1172.
[47] Yang Y. Manufacturing Reactive Powder Concrete Using Common New Zealand Materials, University of Auckland; 2000.
[48] Grabowski E, Gillott J. Modification of engineering behaviour of thermal cement blends containing silica fume and silica flour by replacing flour with silica sand. Cement and Concrete Research. 1989;19(4):499-508.
[49] Kang S-T, Lee Y, Park Y-D, Kim J-K. Tensile fracture properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with steel fiber. Composite Structures. 2010;92(1):61-71.
[50] Dupont D, Vandewalle L. Distribution of steel fibres in rectangular sections. Cement and Concrete Composites. 2005;27(3):391-398.
[51] ASTM C192 / C192M-15. Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International. West Conshohocken, PA; 2015.
[52] ASTM C230 / C230M-14. Standard Specification for Flow Table for Use in Tests of Hydraulic Cement. ASTM International. West Conshohocken, PA; 2014.
[53] ASTM C109/C109M-16a. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. ASTM International. West Conshohocken, PA; 2016.
[54] ASTM C1611 / C1611M-14. Standard Test Method for Slump Flow of Self-Consolidating Concrete. ASTM International. West Conshohocken, PA; 2014.
[55] ASTM C1621 / C1621M-14. Standard Test Method for Passing Ability of Self-Consolidating Concrete by J-Ring. ASTM International. West Conshohocken, PA; 2014.
[56] CNS 14841, 自充填混凝土流下性試驗法(漏斗法), 經濟部標準檢驗局, 台灣; 2014。
[57] ASTM C39/C39M-15a. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International. West Conshohocken, PA; 2015.
指導教授 洪崇展、李顯智(Chung-Chan Hung Xian-Zhi Li) 審核日期 2016-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明