博碩士論文 102322604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:52.14.150.55
姓名 鄧彩雅(Dara Zam Chairyah)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱
(Seismic Performance of Framed Structures with Double-sided Trapezoidal Steel Plate Infill Walls)
相關論文
★ 隅撐鋼結構耐震性能研究★ 含斜拉鋼筋之中空複合構件於三維載重下之耐震行為
★ 應用不同尺度隅撐之鋼結構耐震性能研究★ 雙孔中空複合構件耐震性能研究
★ 具挫屈控制機制之隅撐構架耐震行為研究★ 圓形中空複合構材耐震性能研究
★ 多層多跨隅撐鋼結構之耐震性能研究★ 隅撐抗彎構架之性能設計研究與分析
★ 配置開槽消能鋼板之預力式橋柱耐震性能研究★ 具鋼板消能裝置之隅撐結構耐震行為研究
★ 中空鋼骨鋼筋混凝土耐震補強有效性研究★ 具自復位隅撐鋼結構耐震性能研究
★ 具自復位梁柱接頭隅撐鋼結構耐震性能研究★ 具消能隅撐內框架之構架耐震性能研究
★ 具摩擦消能機制之Y型隅撐鋼結構耐震性能研究★ 全鋼線網圍束中空複合構材之扭轉撓曲行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 抗彎構架(MRF)已被廣泛用作抵抗側力之系統,雖然此系統具
有良好的韌性,但因勁度較低導致其受力時會產生過大的變形。為了
改善上述抗彎構架之缺點,本研究提出雙面波浪鋼板填充牆構架系統。
研究中針對六組構架,包括一組空構架以及五組配置不同彎折角度之
波浪鋼板填充牆構架,施以反覆側向力進行試驗,藉此探討單面波浪
鋼板填充牆(ST 系列)與雙面波浪鋼板填充牆(DT 系列)之強度、勁度
和消能容量,以評估波浪鋼板填充牆之耐震性能。由實驗結果得知,
當單面與雙面波浪鋼板填充牆與構架具適當接合時,其耐震行為表現
良好。相較於單面波浪鋼板填充牆,雙面波浪鋼板填充牆具有更佳的
耐震行為。此外,本研究利用有限元素模擬分析和理論分析所獲得的
結果,與試驗結果進行比較,由比較結果得知,本研究所提出之方法
具適當正確性,為有效之分析方法。
摘要(英) Moment resisting frames(MRF) have been commonly used as lateral load resisting systems. The MRF systems possess significant ductility, however lower stiffness that usually incur excessive deformation.To improve the performance of MRF, application of inovative double-sided trapezoidal steel plate infill wallwas proposed in this study. A series of experimental and analytical investigations were carried out. Six frame structures, including one bare frame and five frames with various arrangements of corrugated plate infill walls were tested under cyclic load.The strength, stiffness and energy disspation of frames with single-sided (ST Series) and double-sided (DT Series) trapezoidal steel plate infill walls were compared to evaluate the seismic performance of the proposed design. It was found from the test results that both ST and DT specimens exhibited high performance when adequate connections between the plate and surrounding frame members were designed. Further comparisons on the responses of ST and DT specimens indicated that higher performance gains was achieved when double sided trapezoidal plates were used. Finally, the test results were compared with the results obtained from finite element simulation and analytical calculation. Adequate accuracy was achieved which justified the effectiveness of the proposed design method and the analytical model.
關鍵字(中) ★ 波浪鋼板
★ 填充牆
★ 消能裝置
★ 耐震性能
關鍵字(英) ★ Trapezoidal steel plate
★ Infill wall
★ Energy dissipation
★ Seismic performance
論文目次 CHAPTER I 1
INTRODUCTION 1
1.1 Background 1
1.2 Motivation 5
1.3 Objectives 6
1.4 Structures 7
CHAPTER II 8
LITERATURE REVIEW 8
2.1 Steel Frames with Steel Plate Infill Wall 8
2.2 Behavior of Trapezoidal Steel Plate Infill Wall 10
2.3 Semi Rigid Beam-Column Connections 12
2.4 Blind Rivet Connections 13
2.5 Connection Between Framed structure and Steel Plate Infill Wall 15
CHAPTER III 16
METHODOLOGY 16
3.1 Theory 16
3.1.1 Shear Analysis of Trapezoidal Corrugated Infill Wall 16
3.1.1.1 Inclination Angle of Tension Field in Infill Panel 16
3.1.1.2 Buckling Shear Stress of Trapezoidal Plate 17
3.1.1.3 Tension Field Stress 20
3.1.1.4 Ultimate Shear Strength of Trapezoidal Corrugated Plate Shear Wall 21
3.1.2 Strength and Design of Blind Rivet Plate Connection 22
3.1.2.1 Strength of Riveted Joint 22
3.1.2.2 Design of Riveted Joint 24
3.1.3 Strong Column Weak Beam Principle 25
3.2 Finite Element Analysis 27
3.1.4 Analytical Model for Bare Framed Simulation. 27
3.1.5 Analytical Model for Frame with single and double sided trapezoidal steel plate infill wall 29
CHAPTER IV 32
EXPERIMENTAL PROGRAM 32
4.1 Specimens 32
4.2 Material Properties 34
4.3 Specimen Label 34
4.4 Specimen Details 35
4.5 Instrumentations 35
4.6 Experimental Set-up 37
4.7 Loading Protocol 39
CHAPTER V 40
RESULTS AND OBSERVATIONS 40
5.1 Introduction 40
5.2 Responses of Bare Frame 40
5.3 Responses of ST-40 41
5.4 Responses of ST-60 42
5.5 Responses of ST-80 43
5.6 Response of DT-40 45
5.7 Response of DT-60 46
CHAPTER VI 49
COMPARISONS AND DISCUSSIONS 49
6.1 Introduction 49
6.2 DeformationCapacity 49
6.3 Strength 50
6.4 Stiffness 51
6.5 Energy Dissipation 52
6.6 Comparison Between Test Results and Analytical Results 53
6.7 Comparisons Between Test Results and Finite Element Analyses 53
CHAPTER VII 55
CONCLUTIONS 55
7.1 Conclusions 55
REFERENCES 57
APPENDIX 125
參考文獻 AISC. Seismic Provisions for Structural Steel Buildings. Chicago, IL : American Institute of Steel Construction, 2005.
Abolmaali, A., Kukreti, A.R. and Razavi, H., 2003. Hysteresis behavior of semi-rigid double web angle steel connections. Journal of Constructional Steel Research, 59(8), pp.1057-1082.
Astaneh-Asl, A. 2000.”Steel Plate Shear Wall” U.S.-Japan Workshopmon Seismic Fracture Issues in Steel Structures,San Francisco
Anon. 1978. Patent problems, challenge spawn steel seismic walls. Engineering News Record, January 26.
Bahrebar, Milad, Tadeh Zirakian, and Mohammad Hajsadeghi.2015. "Nonlinear buckling analysis of steel plate shear walls with trapezoidally-corrugated and perforated infill plates
Bennier, D.J. 2009. Hybrid Simulation of Steel Frames with Semi-Rigid Connections. Thesis. University of Illinois, Urbana-Champaign.
Berman, J.W., Bruneau, M. 2005. “Experimental investigation of light-gauge steel plate shear walls.” Journal of Structural Engineering, ASCE, 131 (2) 259-267.
Bjorhovde, R., Colson, A. and Brozzetti, J.1990, “Classification System for Beam-to-Column Connections”, Journal of Structural Engineering - ASCE, Vol. 116, No. 11, 1990, pp 3059-3076.
Dean, R.G., Canon, T.J. and Poland, C.D., 1977 , “Unusual Structural Aspects of H.C. Moffit Hospital,” Proceedings, 46th Annual Convention, SEAOC, Coronado, CA , October.
Elgaaly, M., Hamilton, R.W. and Seshadri, A. 1996. Shear strength of beams with corrugated webs, Journal of Structural Engineering, ASCE, Vol. 122, No. 4, pp. 390-398
Elnashai A.S. et al. 1998. Response of Semi-Rigid Steel Frames to Cyclic and Earthquake loads. Journal of Structural Engineering, ASCE, Vol.124 No8,857-868
Emami, F., Mofid, M., Vafai, A. 2013. “Experimental study on cyclic behavior of trapezoidally corrugated steel shear walls.” Engineering Structures, 48 (March) 750-762.
Emami, F., Mofid, M. (2014). “On the hysteretic behavior of trapezoidally corrugated steel shear walls.” TheStructural Design of Tall and Special Buildings, 23 (2) 94-104.
Gholizadeh, M., and Y. Yadollahi. 2012."Comparing Steel Plate Shear Wall Behavior with Simple and Corrugated Plates." Applied Mechanics and Materials. Vol. 147. 2012.
Kalali, H., Hajsadeghi, M., Zirakian, T., Alaee, F.J. (2015). “Hysteretic performance of SPSWs with trapezoidally horizontal corrugated web-plates.” Steel and Composite Structures, An International Journal, 19 (2). (In Press)
Kharrazi, MHK. 2005. Rational method for analysis and design of steel plate walls. Ph.D. dissertation. Vancouver (Canada): University of British Columbia
Kharrazi, M.H.K. et al. 2010. Analysis and design of steel plate walls: analytical model. NRC Research Press web site at cjce.nrc.ca. Can.J.Civ.Eng.38:49-59.
Mo, Y., Perng, S. (2000) “Behavior of framed shearwalls made of corrugated steel under lateral load reversals.” Advances in Structural Engineering, 3 (3) 255-262.
Nader, M. N. and A. Astaneh-Asl 1992. Seismic Behavior and Design of Semi-Rigid Steel Frames. Technical Report UCB/EERC-92/06. Earthquake Engineering Research Center, University of California, Berkeley.
Nader, M. N. and A. AstanehAsl. 1996. "Shaking table tests of rigid, semirigid, and flexible steel frames." Journal of Structural Engineering-Asce 122(6): 589-596.
Sabelli, R., Bruneau, M. (2007). Steel Plate Shear Walls, ASCE Steel Design Guide 20, USA.
Sabouri-Ghomi S, Ventura CE, Kharrazi MHK. Shear analysis and design of ductile steel plate walls. J Struct Eng ASCE 2005;131(6):878–89.
Sherif A. Ibrahim, P.E., 2015. “Steel Plate Girder with Corrugated Web, Past, Present and Future”.Technical Report. Air Shams University, Cairo.
Timler, P.A. and Kulak, G.L., 1983. Experimental study of steel plate shear walls.
Thorburn, L.J., Kulak, G.L. and Montgomery, C.J., 1983. Analysis of steel plate shear walls.
Tromposch, E.W. and Kulak, G.L., 1987. Cyclic and static behaviour of thin panel steel plate shear walls. Department of Civil Engineering, University of Alberta.
Qu, B., Bruneau, M. 2009.Seismic design of boundary frame members of steel plate shear walls. Steessa-Taylor& Francis Group, London.
Witek, L. 2005. Numerical and Experimental Analysis of Preliminary Stress, Limiting Load Capacity and Fatigue Life of Blind Riveted Joint. Journal of theoretical and applied mechanics, 43(22)x pp.309-325.
Yi J, Gil H, Youm K, Lee H. Interactive shear buckling corrugated steel webs.
Eng Struct 2008;30(6):1659–66.
指導教授 許協隆(Hsieh-Lung Hsu) 審核日期 2016-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明