博碩士論文 102322605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:100.24.122.117
姓名 胡達馬(Dio Alif Hutama)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱
(Displacement-based Seismic Design Optimization of Cantilever Retaining Wall)
相關論文
★ 土壤液化評估模式之不確定性★ 廣域山崩之統計與最佳化分析-以莫拉克風災小林村鄰近地區為例
★ 砂土中模型基樁之單向反覆軸向載重試驗★ 邊坡穩定分析方法之不確定性
★ 不同試驗方法對黏土壓縮與壓密性質之影響★ 台北盆地黏性土壤不排水剪力強度之研究
★ 土壤液化引致地盤永久位移之研究★ 台北盆地地盤放大特性之研究
★ 水力回填煤灰之動態特性★ 全機率土壤液化分析法
★ 黏土壓縮與壓密行為之研究★ 集集地震液化土之穩態強度
★ 現地土壤之液化強度與震陷特性★ 地震規模修正因子之探討
★ 鯉魚潭水庫大壩受震反應分析★ 全機率土壤液化評估法之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 擋土牆之最佳化設計研究已進行多年,然而一般實務擋土牆最佳化設計僅考慮擋土牆之幾何性質、穩定性、配筋情形為束制條件。但實際上位移因子為擋土牆耐震設計之重要參數,故需將此因子納入最佳化分析之束制條件中,故本研究將位移分析方法納入懸臂式擋土牆之耐震最佳化設計。由於前人研究提出許多基於Newmark 滑動塊體理論之簡化模型來求取地震引致之永久位移,本研究使用30個歷史地震記錄輸入至Newmark 滑動塊體理論及其簡化模型求取永久位移,並統計各模型計算之優劣,來決定一個較佳的永久位移計算模型供最佳化分析使用。
本研究使用實數編碼遺傳演算法搜尋最佳解,本研究額外引入之束制條件為台灣設計規範與擋土牆容許位移為擋土牆高之1/200。最佳化分析結束後,懸臂擋土牆之配筋圖、土方開挖量、回填土方、混凝土方、鋼筋數量皆可自動輸出結果。接續則進行案例測試以確認演算法之效率與可行性,分析結果可顯示不同歷史地震記錄對鋼筋量及工程金額之影響情形。本研究之最佳解發生於案例條件為懸臂式擋土牆設置剪力榫,且搜尋範圍區間為0.01。從案例分析可得知,本研究所提出基於遺傳演算法結合受震位移分析方法之懸臂式擋土牆最佳化設計分析,除了可達到節省工程經費外,亦可使該設計具備安全穩定性與耐震性。
摘要(英) Design optimization of retaining wall has been the subject of research for many years. However, the commonly applied design constraints are only geometry, stability and reinforcement. Since displacement is one of the important parameters in seismic design of retaining wall, this parameter should be considered as an additional design constraints. In this study, the displacement-based approach is utilized in seismic design optimization of cantilever retaining wall. A special feature to calculate seismic permanent displacement is installed. Some simplified models used to obtain earthquake-induced displacements based on Newmark’s sliding block theory published by previous researchers have been assessed to determine the proper method and simplify the optimization problem. For this purpose, an appropriate statistical test has been performed to compare permanent displacement obtained from the Newmark’s sliding block analysis and the simplified methods proposed by previous researchers using 30 historical earthquake records. The real-coded genetic algorithm (RGA) is proposed for searching the optimal solution. The constrained conditions involve design codes of Taiwan and allowable displacement of retaining wall 1/200 of height. The design drawing of bar arrangement; the quantities of soil excavation, backfill and concrete, and the number of steels would automatically output after finishing the optimal analysis. Subsequently, some case studies are conducted to verify the efficiency and validity of the algorithm. The results are presented on the effect of different historical earthquake records on the amount of reinforcement and value of cost design. The best optimum solution is obtained for case study using searching increment 0.01 and with shear key. Through some case studies, the proposed RGA and displacement-based design approach demonstrated that they are capable of generating low-cost cantilever retaining wall designs that satisfy safety, stability, and seismic performance of structures designed for earthquake-prone region.
關鍵字(中) ★ 最佳化
★ 懸臂式擋土牆
★ 耐震設計
★ 永久位移
關鍵字(英) ★ optimization
★ cantilever retaining wall
★ seismic design
★ permanent displacement
論文目次 TABLE OF CONTENTS

ABSTRACT i
CHINESE ABSTRACT ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF TABLES vii
LIST OF FIGURES viii
CHAPTER 1: INTRODUCTION 1
1.1 Research Background 1
1.2 Research Objectives 2
1.3 Research Flowchart 3
1.4 Thesis Organization 3
CHAPTER 2: LITERATURE REVIEW 4
2.1 Design Optimization of Retaining Wall 4
2.2 Genetic Algorithm for Design Optimization 5
2.2.1 Genetic Algorithm (GA) 5
2.2.2 Real-coded Genetic Algorithm 7
2.3 Newmark’s Sliding Block Theory 8
2.4 Static Displacement Analysis 9
2.4.1 Wall Displacement 9
2.4.2 Foundation Displacement 12
2.5 Dynamic Displacement Analysis 15
2.6 Forces Acting in Cantilever Retaining Wall 16
2.6.1 Static Active Earth Pressure 16
2.6.2 Dynamic Active Earth Pressure 17
2.6.3 Static Passive Earth Pressure 18
2.6.4 Dynamic Passive Earth Pressure 18
2.6.5 Water Pressure 19
2.6.6 Dynamic Water Pressure 19
2.6.7 Bouyancy 20
2.6.8 Uniform Load 20
2.6.9 Line Load 20
2.6.10 Point Load 21
2.7 Stability Analysis of Cantilever Retaining Wall 22
2.7.1 Check for Sliding along the Base 22
2.7.2 Check for Overturning 24
2.7.3 Check for Bearing Capacity 26
2.8 Reinforcement of Cantilever Retaining Wall 30
2.8.1 Stem Reinforcement 31
2.8.2 Slab Reinforcement 34
2.8.3 Automation of Reinforcement 38
CHAPTER 3: OPTIMIZATION FORMULATION 39
3.1 Geometric Design Variables 39
3.2 Lower and Upper Bound of Design Variables 39
3.3 Design Constraints 40
3.3.1 Sliding Stability 40
3.3.2 Overturning Stability 40
3.3.3 Bearing Capacity Stability 40
3.3.4 Shear Reinforcement of Stem 41
3.3.5 Reinforcement Ratio of Stem 41
3.3.6 Shear Reinforcement of Toe 41
3.3.7 Reinforcement Ratio of Toe 42
3.3.8 Shear Reinforcement of Base 42
3.3.9 Reinforcement Ratio of Base 42
3.3.10 Horizontal Top Wall Displacement 42
3.3.11 Permanent Displacement 43
3.3.12 Development Length for Reinforcement 43
3.4 Objective Function 43
3.4.1 Excavation Cost 43
3.4.2 Retaining Wall Construction Cost 44
3.4.3 Backfill Cost 44
3.5 Parameter of Real-coded Genetic Algorithm (RGA) 45
CHAPTER 4: SELECTION OF ANALYTICAL METHOD FOR ESTIMATING PERMANENT DISPLACEMENT 46
4.1 Selection Procedure 46
4.2 Selection of Historical Earthquake Records 47
4.3 Computation of Permanent Displacement 49
4.3.1 Newmark’s Sliding Block Analysis 49
4.3.2 Simplified Newmark’s Sliding Block Models 50
4.4 Comparison of Computed Permanent Displacements 50
4.5 Statistical Analysis 53
4.6 Determination of Analytical Method 56
CHAPTER 5: CASE STUDIES AND DISCUSSION 58
5.1 Case Studies 58
5.2 Lower and Upper Bound 59
5.3 Effect of Searching Increment 59
5.4 Effect of Shear Key 61
5.5 Effect of Different Historical Earthquake Records 67
CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 68
6.1 Conclusions 68
6.2 Recommendations 68
REFERENCES 69
APPENDIX I 72
APPENDIX II 78
參考文獻 1. Bazaz, J.B., and Fahmideh, A., “Optimum Cost Design of Concrete Cantilever Retaining Wall Using Genetic Algorithm”, Proceeding of 9th International Congress on Civil Engineering, Iran (2012).
2. Blanco, A., Delgado, M., and Pegalajar, M. C., “A Real-coded Genetic Algorithm for Training Recurrent Neural Networks”, Neural Networks, Vol. 14 pp. 93-105 (2001).
3. Bowles, J. E., “Foundation Analysis and Design,” McGraw-Hill Book Co, U.S.A (1988).
4. Cai, Z., and Bathurst, R.J., “Deterministic Sliding Block Methods for Estimating Seismic Displacements of Earth Structures”, Soil Dynamics and Earthquake Engineering, Vol. 15, No. 4, pp. 255-268 (1996).
5. Camp, C., and Akin, A., “Design of Retaining Walls Using Big Bang–Big Crunch Optimization”, Journal of Structural Engineering, ASCE, Vol. 138, pp. 438-448 (2012).
6. Ceranic, B., Fryer, C., and Baines, R. W., “ An Application of Simulated Annealing to the Optimum Design of Reinforced Concrete Retaining Structures”, Computer and Structures, Vol. 79, pp. 1569-1581 (2001).
7. Construction and Planning Agency, Seismic Design Specification for Building and Commentary, Construction Magazine, Taipei (2006).
8. Das, B.M., “Principles of Foundation Engineering”, Brooks/Cole Publishing Company, Pacific Grove, California (1998).
9. Donkada, S., and Menon, D. “Optimal Design of Reinforced Concrete Retaining Walls”, The Indian Concrete Journal, pp. 9-18 (2012).
10. Huang, C.C., Wu, S.H., and Wu, J.H., “Seismic Displacement Criterion for Soil Retaining Walls Based on Soil Strength Mobilization”, Journal of Geotechnical and Geoenviromental Engineering, ASCE, Vol. 135, No. 1, pp. 74-83 (2009).
11. Japan Road Association, Japanese Design Specifications for Highway Bridges, IV Lower Structure Series, Tokyo (2002).
12. Karbasiravari, M., and Sanaeirad, A., “Application of Genetic and Bees Algorithms in the Design of Reinforced Concrete Retaining Walls for Static and Pseudo-Dynamic Loadings”, International Journal of Basic Sciences & Applied Research, Vol., 2, No.12, pp. 1002-1009 (2013).
13. Kaveh, A., and Abadi, A. S. M., “Harmony Search based Algorithms for the Optimum Cost Design of Reinforced Concrete Cantilever Retaining Walls”, International Journal of Civil Engineering, Vol. 9, No. 1, pp. 1-8 (2011).
14. Kaveh, A., and Khayatazad, M., “Optimal Design of Cantilever Retaining Walls Using Ray Optimization Method”, Transactions of Civil Engineering, IJST, Vol. 38, No. C1+, pp. 261-274 (2014).
15. Khajehzadeh, M., Taha, M. R., Shafie, A. E., and Eslami, M., “Economic Design of Retaining Wall Using Particle Swarm Optimization with Passive Congregation”, Australian Journal of Basic and Applied Sciences, Vol. 4, No. 11, pp.5500-5507 (2010).
16. Kramer, S.L., Geotechnical Earthquake Engineering, Prantice-Hall, New Jersey, pp. 438-443 (1996).
17. Malhotra, R., Singh, N., Singh, Y., “Genetic Algorithms: Concepts, Design for Optimization of Process Controllers”, Jounal of Computer and Information Science, Vol. 4, No. 2, pp. 39-54 (2011).
18. McCall, J., “Genetic Algorithms for Modelling and Optimisation”, Journal of Computational and Applied Mathematics, Vol. 184, No. 1, pp. 205-222 (2005).
19. Nadim, F., and Whitman, R.V., “Coupled Sliding and Tilting of Gravity Retaining Walls During Earthquakes”, Proceedings of Eighth World Conference on Earthquake Engineering, San Francisco, California, USA, pp. 477-484 (1984).
20. Newmark, N.M., “Effects of earthquakes on dams and embankments”, Geotechnique, Vol. 15, No. 2, pp. 139–160 (1965).
21. Pei, Y., and Xia, Y., “Design of Reinforced Cantilever Retaining Walls using Heuristic Optimization Algorithms” Procedia Earth and Planetary Science , Vol. 5, pp. 32 – 36 (2012).
22. Richards, R.J., and Elms, D., “Seismic Behavior of Gravity Retaining Walls”, Journal of Geotechnical Engineering Division, Vol. 105, No. 4, pp. 449-464 (1979).
23. Sable, K. S. and Patil A. A., “ Comparison between Optimization and Conventional Cantilever Retaining Wall by Using Optimtool in Matlab”, International Journal of Engineering and Advanced Technology, Vol. 1, Issue 6, pp. 255-261 (2012).
24. The Chinese Institute of Civil and Hydraulic Engineering, “Design Code and Commentary to Concrete Engineering (DCCCE)”, Scientific & Technical Publishing, Taiwan (2005).
25. Whitman, R.V., and Liao, S., “Seismic Design of Gravity Retaining Walls”, Proceedings of Eighth World Conference on Earthquake Engineering, San Francisco, California, USA, pp. 533-540 (1984).
26. Zhu, C.W., “Optimum Design of Cantilever Retaining Wall”, Master Thesis, National Central University Department of Civil Engineering, Jhongli (2008).
指導教授 黃俊鴻(Jin-Hung Hwang) 審核日期 2016-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明