博碩士論文 102323003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.139.235.177
姓名 凃勝勛(Sheng-Xun Tu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 石墨烯與奈米顆粒複合熱介面材料 應用於高功率IGBT元件熱管理
(Graphite nanoplatelet-based and nanoparticle composites as thermal interface materials and application to the thermal management of high power IGBT devices)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文探討雙向IGBT Converter系統與自主式微電網連結,其熱管理是非常重要的,因為高電壓或高電流將間接地或連續地產生高溫使其使用壽命減短,甚至破壞整體系統運作,特別是使用高功率元件絕緣柵雙極晶體管(insulated gate bipolar transistor, IGBT)。熱界面材料(Thermal interface materials, TIM) 對於高功率元件散熱有很大的改善與幫助,在本論文中所使用TIM是將兩種高散熱的TIM納米石墨片(graphite nanoplatelets, GNPs)與納米顆粒(nanoparticles, NPs)進行疊加試驗,疊加方式是通過網印製程以確保NPs均勻的印在GNPs上,利用疊加的TIM使得熱界面材料的有效熱傳遞以及良好的散熱性能應用在Converter系統中IGBT實驗中並加以探討。
本論文以Converter系統中IGBT為對象利用一個以模擬技術(finite difference or finite element method)的方法,並透過模擬軟體COMSOL進行模擬,且實際進行實驗對高功率元件之結構進行熱管理分析,包含熱源、起始與邊界條件、各種散熱情境對元件溫度分布與最終性能之影響。並將以IGBT模塊的內部結構和材料特性為基礎,探討熱循環與熱應力使導致焊料層疲勞、鋁接線斷裂或剝離、(Direct bonded copper ,DBC)直接覆銅基板失效等故障產生。
摘要(英) In this study, the thermal management of the Converter system is of great importance since very high voltage/current will be switched intermittently and/or continuously and high temperature is detrimental to the service life of electronics, especially for the switching devices such as insulated gate bipolar transistor (IGBT). Thermal interface materials (TIMs) are generally composed of highly conductive particle fillers such as high thermal conductivity of graphite and a matrix such that efficient heat transfer and good compliance of the interface material can be achieved during application. In this paper, two types of TIMs are tested based on the hybridization of graphite nanoplatelets (GNPs) and the nanoparticles (NPs). The hybrid materials are fabricated via screen printing process to ensure the conformal uniformity of NPs spreading on the GNPs.
In particular, existing Institute of nuclear energy research Converter is the key component and core components is the high-power IGBT. We carry out mechanical simulations using a finite element method (FEM) simulator (COMSOL) for a simplified 3D power assembly to calculate the different temperatures fields due to natural and forced convection conditions. In addition to collecting the relevant literature relevant to IGBT failure modes and Direct bonded copper (DBC) failure.
關鍵字(中) ★ 電力轉換器
★ IGBT
★ 熱界面材料
★ 疲勞破壞
關鍵字(英) ★ Converter
★ IGBT
★ Thermal interface material
★ Fatigue damage
論文目次 摘要 i
Abstract ii
致謝 v
目錄 v
圖目錄 vii
表目錄 xiii
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 論文架構 3
第二章 文獻回顧 4
2-1 高功率元件 4
2-2 熱介面材料 6
2-3 模擬方法 7
第三章 複合熱介面材料之熱阻與熱導率分析 10
3-1 導論 10
3-2 實驗架構 11 
3-3 結果與討論 18
第四章 IGBT量測模擬比較與破壞分析 26
4-1 IGBT量測與模擬比較 26
4-1-1 IGBT量測實驗 27
4-1-2 IGBT模擬實驗 35
4-1-3 IGBT量測與模擬結果比較 46
4-2 IGBT破壞分析 48
第五章 結論與建議 57
5-1 結論 57
5-3 未來展望 60
參考文獻 61
參考文獻 [1] 鄭振東編譯,「換流器驅動技術」,建興出版社,民國八十年
[2] D.D.L. Chung, Thermal Interface Materials, J. Mater. Perform. 10 (2001) 56–59.
[3] R. Skuriat, J. F. Li, P. A. Agyakwa, N. Mattey, P. Evans and C. M. Johnson, Degradation of Thermal Interface Materials for High-Temperature Power Electronics Applications, Microelectron. Reliab. 53 (2013) 1933–1942.
[4] B. Smith, T. Brunschwiler and B. Michel, Comparison of Transient and Static Test Methods for Chip-to-Sink Thermal Interface Characterization, Microelectron. J. 40 (2008) 1379-1386.
[5] R. Kempers, P. Kolodner, A. Lyon and A. J. Robinson, A High-Precision Apparatus for The Characterization of Thermal Interface Materials, Rev Sci Instrum. 80 (2009) 095111-1-095111-11.
[6] R. Mahajan, C. P. Chiu and G. Chrysler, Cooling a Microprocessor Chip, Proc IEEE 94 (2006) 1476-1486.
[7] B. Czerny, M. Lederer, B. Nagl, A. Trnka, G. Khatibi and M. Thoben, Thermo-mechanical analysis of bonding wires in IGBT modules under operating conditions, Microelectron. Reliab. 52 (2012) 2353-2357.

[8] M. Bouarroudj, Z. Khatir, J.P. Ousten, F. Badel, L. Dupont, S. Lefebvre, Degradation behavior of 600 V-200 A IGBT modules under power cycling and high temperature environment conditions, Microelectron. Reliab. 47 (2007) 1719-1724.
[9] O. Schilling, M. Schäfer, K. Mainka, M. Thoben, F. Sauerland, Power cycling testing and FE modelling focussed on Al wire bond fatigue in high power IGBT modules, Microelectron. Reliab. 52 (2012) 2347-2352.
[10] A. Benmansour, S. Azzopardi, J. C. Martin, E. Woirgard, Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions, Microelectron. Reliab. 47 (2007) 1730-1734.
[11] H. Lu, C. Bailey and C. Yin, Design for reliability of power electronics modules, Microelectron. Reliab. 49 (2009) 1250–1255.
[12] T. Lhommeau, X. Perpin, C. Martin, R. Meuret, M. Mermet-Guyennet and M. Karama, Thermal fatigue effects on the temperature distribution inside IGBT modules for zone engine aeronautical applications, Microelectron. Reliab. 47 (2007) 1779-1783.


[13] X. Perpina, J.F. Serviere, X. Jorda, A. Fauquet, S. Hidalgo, J. Urresti-Ibanez, J. Rebollo and M. Mermet-Guyennet, IGBT module failure analysis in railway applications, Microelectron. Reliab. 48 (2008) 1427-1431.
[14] X. Perpina, A. Castellazzi, M. Piton, M. Mermet-Guyennet and J. Millan, Failure-relevant abnormal events in power Converters considering measured IGBT module temperature inhomogeneities, Microelectron. Reliab. 47 (2007) 1784-1789.
[15] Y. P. Zhang, X. L. Yu, Q. K. Feng and R. T. Zhang, Thermal performance study of integrated cold plate with power module, Appl. Therm. Eng. 29 (2009) 3568-3573.
[16] Y. J. Lee, P. S. Lee and S. K. Chou, Hotspot mitigating with obliquely finned microchannel heat sink - an experimental study, IEEE Trans. Compon. Packag. Technol. 3 (2013) 1332-1341.
[17] C. K. Liu, S. J. Yang, Y. L. Chao, K. Y. Liou and C. C. Wang, Effect of non-uniform heating on the performance of the microchannel heat sinks, Int. Commun. Heat Mass 43 (2013) 57-62.
[18] MITSUBISHI ELECTRIC, IGBT Modules Application Note, Mar, 2014

[19] P. K. Schelling, L. Shi and K. E. Goodson, Managing Heat for Electronics, Mater Today 8 (2005) 30–35.
[20] Y. S. Xu and D. D. L. Chung, Increasing the Thermal Conductivity of Boron Nitride and Aluminum Nitride Particle Epoxy-Matrix Composites by Particle Surface Treatments, Compos Interfaces 7 (2000) 243–256.
[21] X. Sun, A. Yu, P. Ramesh, E. Bekyarova, M. E. Itkis and R. C. Haddon, Oxidized Graphite Nanoplatelets as an Improved Filler for Thermally Conducting Epoxy-Matrix Composites, J Electron Packaging 133 (2011) 020905.
[22] J. L. Xiang and L. T. Drzal, Thermal Conductivity of Exfoliated Graphite Nanoplatelet Paper, Carbon 49 (2011) 773–778.
[23] COMSOL Multiphysics® Modeling Software,皮托科技股分有限公司熱傳模組範例.
[24] 張添昌,盧弘翊, 發展能源電子轉換器三維熱流模型建模技術服務結案報
[25] 李龍育,ANSYS Multiphysics FLUENT,虎門科技股份有限公司,July,11,2013.
指導教授 傅尹坤(Yiin-Kuen Fuh) 審核日期 2015-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明